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H.. Output Control of Discrete-Time Systems
via Convex Optimization
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Abstract: This paper presents a convex optimization approach to (nearly) optimal H.. out-
put control problem of discrete-time systems. By using nonlinear matrix valued mapping,it is
shown that the H., output problem can be formulated as minimization of a linear objective func-
tion over a convex set inn (n+1)+1 dimensional space where # is the system dimension. Under
the detectability and stabilizability conditions, the set is bounded. The H.. norm of the closed-
loop system yielded by this method can come arbitrarily close to the minimum H.. norm. The
method proposed can handle the additional convex constraints.
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1 Introduction

It has been shown many control problems such as quadratic stabilization of uncertain
systems ™, H? control problems', generalized H? control problemland mixed H*/H.. con-
trol problems ¥7 (H? control problems with the H.. norm bound) can be formulated as
convex programming problems because a convex programming problem can be solved effi-
ciently by well developed optimization algorithms and the global optimal solution can be
obtained. Another important advantage is that other requirements and limitations can be
directly tackled with if theycan be converted to convex constraints. For H.. control prob-
lems of discrete-time systems, [3] has shown design of state feedback controllers to
achieve the prescribed H., norm bound can be solved by convex optimization based on a
sufficient condition.

This paper addresses H.. output feedback control problems for discrete-time systems.
The optimal H.. control problems are formulated as nonlinear optimization problems with
five coupling nonlinear matrix inequalities (with respect to the cone of positive definite ma-
trices). By changes of the variables,we show the H.. output control problem can be solved
by a convex optimization approach. A new procedure for design of H., output controllers is
presented.
2 Problem Statement

Consider the discrete-time feedback system shown in Fig. 1. The plant P is described
by
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z(t + 1) = Az(®) + Biw() + Bu@®),
z2(t) =C, @) + Dyiw@®) + Dut), ¢D)
y(@) = Coz(@) + Dyw (@) + Dyu(t)

where z € R",w € R™,u € R™,z € R and y € R are state,noise ,control,,regulated out-

put and measurement output vectors respectively , The following assumptions are imposed

s

on the system(1).
A1) For every @ in [0,2x],

A —exp(y)I B,
ran =n -+ my,
C, D,
A—exp(j&OI B
rank B =0+
C2 D21

A2) D, =0, D, = 0.
A3) DIZ’ECI’DIZ:] =5 [0 I]- Dz1l[C2aDz1:] = [0 I]-
A4) A is non-singular.

Some above assumptions are not necessary and z

can be removed™. We impose these assumptions to Plant P

make the results as simple as possible, This paper con-

siders the following problem:to design a linear output

feedback controller C such that closed-loop system is

internally stable and the H.. norm of the closed-loop Ceautiis

system is minimized.
In the following A > (=)B denotes A — Bis posi-

tive definite (or positive semidefinite,respectively). A'refers to the transpose of a matrix

Fig. 1 Feedback system

A. p( +) is the spectral radius of a matrix.

Let
J=’_Iml 0 : j:‘_Iﬁl 0 ;
0 Im2 0 Il’z
q alf
B =[5B "B, con=|7",
C,

where m,,m;,p; and p, are the dimensions of the noise,control,regulated output and mea-
surement output Vectors,respectively.
Theorem 1 Suppose the discrete-time system (1) satisfies Assumptions A1) ~A4).
For a given ¥>>0,the following statements are equivalent.
1) There exists a stabilizing controller such that [ T, || »<<7.
2) a) There exists stabilizing P=>0 such that
R, (P,7), =A'PA—P— A'PB("){J + BM'PBM)'BY)YPA+C/C, =0,
R,(P,7); =— 7 + B/'PB, <0,
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b) There exists stabilizing Q=0 such that
R, (Q,7): = AQA' — Q — AQC()' (J + C(NHRC(M")T'CMRQA' + B,B, = 0,
R4 (Q,?’): =i 721;1 + ClQC1’ i ClQCz’ ad + Cchzl)mlCchll < 0.
c) Ry(P,Q,7): = p(PQ) — 7* < 0.
3) There exist P>>0 and Q>0 such that
R(P,Q,7) <0, i=1,",5.

Moreover ,the H.. output controller is given by

{50 4+ 1) = ApEQ@t) + Bpy(®), 2)
u(@) = Cp§@) + Dpy@).
A, = (A+BMFYI + EC/C))™', Bp=A+BMFU+ EC,/C)'EC,
C,=—F,d + EC,/C)™', Dp=F,I+ EC,C,)'EC,,
ol F, r , . = 1©
F = ; =— (J + B@)PB))'B()PA, w{—_w‘ . P :}5
E=(@Q"'— P/ : i
Proof The equivalence of items (1) and (2) is
adapted from Ionescu and Weiss'). We need to prove
the equivalence of items (1) and (3).Consider a small | EETmoli =S ==
perturbation of the plant P, which is depicted in Fig.
2. The state space realization is given by Fig.2 Perturbed system
z(t +1) = Axz(@) + Byw(®) + N/—ﬁ;wl + Bu(t),
2(t) = Ciz(t) + Djw@) + Dyut), o

12, @) = \/sz(t),
y(@) = Cozx (@) + Dyw () + Dyu(),
where B,,; are small positive scalar.

Suppose there exists a controller such that the closed-loop system is asymptotically
stable and || 7w || »<<7>>0. Then from the the continuity property of H..(for example see
[51), there exist B,.>>0 and B,4+>>0 such that for all 8,€[0,5:+] and B, € [0, ] such
that | Ta || »<<7 » Therefore, following item (2) there exist P=>0 and Q=0 satisfying

Rn(P,Y): = AAPA— P — A'PBy(7)(J; + By(V) PBy("))7'By(¥)' PA + C//C, =— B,

Ru(P,7): =— 71+ [B, BIT[B gIl<o,
Rﬂa(Q’y): s AQA’ S Q i AQCﬂ(‘)’)’ (jl + Cﬂ(‘}')QCﬁ('}’)’)“ICﬁ(}’)QA’ o5 B1B1’ S ﬂlI’
(Q — QC,' I 4 C,QC,))™'C,Q)

Rm(Q’)"): =—'721p1+n+ < 0,

G, C,
Va1 Va1
Rs(P’st): = P(PQ) = )f < 0,

where
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) Im n 0 Py G al ] n 0
Sy 1+ U= } P+
0 Imz 0 IP2
1
7

Bp(y) = [%Bl \/EIBZ:I’ Cﬂ(y) - «/EI .
2

C,
Bacause ([C,! f.,I],A) is detectable for 8,>>0,it follows from Ry (P,7)+B,I=0 that P
>0. It also follows from B3,>>0 that Rz <0 . Since P>>0, R4z <0 implies
P-1 — (BB, + B,I)/7* > 0. (4)

It also means
pi— %BIBI’ > 0.

Simple matrix manipulations yield R,(P,7)<C0.
It follows from (4) that
P~ — (BB + 8,I>/7* + B,B, > 0.
Then using the definition of J; and Bs(¥), simple algebraic manipulations yields

Ry =A" (P71 — ?lg(BlBl’ + 8,I) 4+ B,B,/)'A—P 4 C,/C,,

S A (P! — %B,Bl’ + B,B,/)"'A — P -+ C,'C,

=R, (P,7).
Remember Ry <C0. Thus R, (P,7)<C0.
The proof of R;<C0 and R,<C0 is similar to that of R,<{0 and R,<C0. R;<C0 follows
from the item (2) directly.
Conversely ,suppose there exist P>>0 and Q>0 satisfying R,<{0, {=1,++,5. Obvious-
ly, there exist the matrices M; € R”*" and M, € R"*" satisfying
Ry (P,Y) + MM, =0, Ru,(P,?) <0,
Rz (P,7) + MM, =0, Ru(Q,7) <0, R;(P,Q,7) <0
where Ry, By,Cy are obtained by replacing 8,1 and 8,1 with M, and M, in Ry, BpsCjp. Since
the items (1) and (2) are equivalent,it implies || T: || - <<Y where
(@t + 1) = Az(@) + Biw(®) + Myw, + Bu(®),
z(t) =Cix() + Dyyw@) + Du®),
2, (3) = Myx(2),
y(@) = Cx(®) + Dyw () + Dyu(e).
According to the definition of H.. norm™,we obtain || T., || << || T || «<<7. Using the e-
quivalence of the items (1) and (2) again,the items (3) and (2) are equivalent.
The discrete-time H.. controller follows from [1]and the equivalence of items (2) and

(3). Q.E.D.
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Define the set

SD = {(P9Q97) :Ri(P,ny) < 091 == 1,29"‘ ,5,P > OaQ > 0} (5)
The (nearly) optimal H.. output control problem for discrete-time systems is formulated as
(DP,) min 7.
(P.RNES),

Obviouslysthe problem (DP;) is a highly nonlinear optimization problem. There are
five coupling nonlinear matrix inequality constraints. In addition,these matrix inequalities
contain the inverses of the matrices.

3 Convex Optimization Approach

Define the set

Ny = {(X,Y,7):H,(X,Y,7) <0,i=1,2,3,4} (6)
where
e XC/CX — X — XA ‘
. — AX #B,B — X — BB, |

H,. = #'B,B, — X <0,

o YB/'BY —Y — YA
o Sty "Wheerct= Cic, =Y
AL AL
H_‘: = s .
—pul =Y

Next we will show the set Npis equivalent to the set Sp, which is based on a series of
lemmas.
Lemma 1 There exist P>>0 and ¥>0 such that R, (P,7)<<0 and R,(P,7)<0 if and
only if there exist X>>0 and x>0 such H,(X,#)<<0 and H,(X,x)<0.
_ Proof Suppose that there exist P>0 and Y>>0 satisfying R, (P,7)<0 and R,(P,7)
<0. Since P>0,R,(P,7)<0 implies

P> %BIBJ. )

Let X=P 'and p=1/7. H,(X. #)<<0 is yielded.
The inequality (7) also means

P %BIBI’ 4 B,B, > 0. (®)

Hence the inverse of the matrix P~ — BB, /7" + B,B,' exists. It follows from P>>0 and
R,(P,7) that

P—C/C,> AP — %BIBI’ & B,B,)'A. (9
Combining (8) and (9) yields

P—-C/C A |

|> 0.
A = %BIBI’ + B,B,
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premultiply and postmultiply it by diag {P~" ,I} and let X=P~'and p=1/7. After simple
algebraic manibulations we obtain H; (X, #)<<0 directly.
Conversely, suppose that there exist X>>0 and x>0 such that H; (X, ) <<0,i=1,2.
Let P=X'and Y=1/p. R, (P,7)<0 follows from H,(X, ) <0 by simple algebraic ma-
nipulations. Using the same changes of variables H, (X, p)<0 can be writtem as
P! = PTCC. P! A

AP _lppiipitBe| "
72 1], . 24202

Premultiplying and postmultiplying it by diag {P,I} yields

F oy oo A’

1 o > 0.
A — 7:B.B)' + P! + B,B/

It implies

P —C,/C,>A (P + BMJBM)'A.
Following the matrix inverse lemma and the definition of B(?) and J, the desired result is
obtained. Q.E.D.

Lemma 2 There exist @>0 and ¥>>0 such that R,(Q,7)<<0 and R,(Q,7)<0 if and
only if there exist Y>>0 and £#=>0 such that H (Y,”)<0.

Proof The proof is similar to that of Lemma 4. It should be noticed that the condi-
tion H,<<0 is equivalent to two conditions R;<C0,i=3,4. 5

Lemma 3 There exist P>>0,Q>0 and 7>>0 such that R; (P,Q,7)<<0 if and only if
there exists >0 such that H,(X,Y,7)<0.

Proof Suppose there exists #>0 satisfying H,(X,Y, ) <<0. It implies that X>0 and
Y>0. It also means Y>>, X% Let P=X"1,Q@=Y'and 7=1/p. It follows that P>0,Q>
0 and P<7?Q"'. Hence R;(P,Q,7)<C0. Conversely,suppose there exist P>0,Q>0and 7
>0 such that R;(P,Q,7)<<0. Let X=P~',Y=P'and p=1/7. It implies X>0,Y>0
and Y>?X~!. We obtain H,(X,Y, ) <0.

Theorem 2 The sets Ny defined in (5) and Sp defined in (6) are equivalent.

Proof Note that the same changes of the variables are used in the proof of Lemma 1,
2 and 3. The result follows from the above lemmas. Q.E.D.

Corollary 1 The optimal problem (DP,) is equivalent to the following problem

(DP,) min = — 4

XY €Ny
Moreover ,if the optimal solution is achieved on X,,Y, and g. The minimum H.. norm is
given by 1/ and the associated (nearly) optimal H.. controller is given in (2) by replacing
P,Q and 7 with X5',Y:" and 1/, respectively.
Theorem 3 The set N defined by (6) is convex.
Proof We only need to prove the constraints in the set Np are convex. At first, we

will prove H,(X,z): R XR'—R"" defines a convex matrix valued mapping. The map-
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ping H, can be divided as
0

H X,p) =
Yty 3 0 B,B,

—X XA XC,/'C\X 0
—A'X —A ' 0 #BB," |
The last part. depending on (X, ), is convex. The first part is constant and the second
part linearly depends on (X, x). Hence the mapping H, is convex. The convexity of the
rest constraints can be shown using the similar method. Q.E.D.

It should be noticed that the matrices X and Y are symmetric. The set Np belongs to
an n(n+1)-+1 dimensional space. This set is bounded, which is an important property for
numerical computation.

Theorem 4 The set Npis bounded if the pair (C,,A) is detectable and the pair (A4,
B)) is stabilizable.

Proof It follows from H,>0 that

X —XC,C/X >0.
Since X>>0, it implies
X X
CX I
Thus I—C,XC,'>0. By simple algebraic manipulations,it follows from H,<<0 that
X — BB, + B,B,' — AXA' + AXC, — C,XC,")"'C//XA' > 0.

That is A
X + BB, — AXA' + AXC,'d — C,XC\') 'C,XA' > #B,B,’ > 0.

Since (C,,A) is detectable,using the simple extension of Theorem 3.1, there exists X,
depending on (4,B;,C,) such that —X>X" or X<\— X (see Lemma 4.6 in [9]). Since
X>0, | X || < || X || <oo.. Hence X is bounded. Since X and B,B,' are bounded. It fol-
lows from #*B,B;,' —X — B,B,' <0 that x being bounded. We also can show Y is bounded by
the similar method if (A,B;) is bounded. Hence the set N, is bounded. Q.E.D.

4 Example

Consider the following discrete-time system
e 01

u(®),
0 — 0.3

x(t+1)=‘

1 1
() + ‘ ’wl(t) + '
1 0

X (@)
u(t)

z(t) =

y@) = 2, 4+ w,(2).
We want to design output feedback controller such that the H.. norm of the closed-loop
transfer function matrix is minimized.
According to the design procedure developed in this paper,the convex optimization
problem (DP;) is solved with the existing optimization algorithm (e. g. , “optimization

toolbox” in Matlab 4. 0) and the global optimal solution is yielded by
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pn = 0.6029,
0.9915 — 0.0242 7.3242 — 6. 6586
— 0.0242 0.7129 — 6. 6586 6. 9599 ‘
From Corollary 1,the optimal closed-loop norm is given by ¥=1. 6106 and the optimal out-

put H.. controller is given by
— 0.4041 0. 38’87 0. 0169
0. 3052 — 0. 2936 — 0. 2050
u() = [0.3974 — 0.3834]@) 4 0. 01y(®).
5 Conclusion

BN y(2),

§@) + l

This paper extends the existing results for the H. output control problem in several
aspects. First,the optimal H.. output control is formulated as a convex programming prob-
lem for discrete-time systems. More specially,it is a problem of minimization of a linear ob-
jective function over a bounded convex set in n(n+1) +1 dimensional space. This convex
programming problem can be solved by well developed convex optimization algorithms and
the global optimal solution can be obtained. Hence a new procedure for design of He output
controllers is presented. Secondly. it is shown that the H.. norm performance requirement
can be considered as a convex constraint. It is very useful for multi-objective robust control
design. How to extend this approach to the He, control for uncertain systems is being un-
dertaken. .
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