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Robust Controller Design for Uncertain Systems
with Interval Parameters

XU Bugong
(Department of Automation,South China University of Technology « Guangzhou,510641,PRC)

Abstract; A method to design a robust stabilization controller for uncertain systems with in-
terval parameters which can be time-varying is presented. Only the bounds of the system parame-
ters are required to design the robust controller. The design procedure is iterative in nature and
the obtainded robust controller is a linear and fixed one but can tolerate all admissible uncertain-
ties. The method is demonstrated by a power system load-frequency control example.
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1 Introduction

The robust control of uncertain systems is of practical importance since the plants to
be controlled are often modelled approximately and may be subject to parameter
changes™ . Many design techniques for uncertain systems have been developed to deal with
parameter variations,such as sliding mode control technique based on the theory of vari-
able-structure systems™ and various adaptive control techniques®™. In this paper,based on
the analysis theory given in [4,5],a general method is presented for designing a robust
stabilization controller for an uncertain system with interval parameters. The uncertain pa-
rameters can be time-varying and only the lower and upper bounds of these parameters are
required to design the robust controller. A step-by-step iterative design procedure is pro-
posed. The obtained controller is a linear and fixed one but can tolerate all admissible un-
certainties. The method is demonstrated through a power system load-frequency control
example. The organization of this paper is as follows:the main theoty and a step-by-step
design procedure are developed in Section 2,as an illustration of the proposed method,a
load-frequency control example with some simulation results is provided in Section 3,and
the conclusion is given in the last section.
2 Main Results
2.1 Preliminaries

The following notations are used in this paper:=>:belongs to;V :for all;A( ¢ ) ;eigen-
values of matrix('* );a( ¢ );singular value of matrix( * );( * ),;symmetric part of matrix
(+);|C+)|:modulus of the entry( = );( ¢ ), :modulus matrix,i. e, the matrix with modu-

lus entries of a matrix( ¢ ),
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Let us consider a dynamic system described by the following equation
@) = fx@) + E@®x@), ¢D)
where f(z):R"—>R"is a continuous function,z € R" is the state vector,and E(¢) = (E;())
is an nXn time-varying matrix which denotes the parameter uncertainty of the system.
Assumption 1 There exists an n Xz positive definite symmetric matrix solution P for
the following algebraic nonlinear matrix equation
: FP) + 21, =0, (2)
where I, is an nX#n identity matrix, F(P) :R"™*"—R"*"is the nonlinear term which satisfies
2" F(P)x=2z"Pf(x).
Let V(z) =z"Px,where P is the solution of the equation (2). The following prelimi-
nary lemma can be proved.
Lemma 1 The system(1)is asymptotically stable if

ekl (!
amnx ('P.IHUG )S i

where P,, = (P),, U, = (Ueij) = (eij/e)’ E;@) <eg; = IEij(t) |max’ VY tand e = € jmaxe

Proof Let us choose V (x)=a"Px as a Lyapunov candidate. By deriving the deriva-

e <l 3

tive of V(x) along the trajectory of the system(1)and using Assumption 1,we obtain
V@)= 22"()Pf(x@)) + 22" @)PE@)x(2)
= 2T @WFP)z (@) + ") (E"@)P + PE@))x(t)
=z (W)(— 21, + E" ()P + PEG@))x (). 4
Now from (3),similarly to the proof of Theorom 1 in [4] and [5],we can get
Omax (L €U.), << 1,V 3200 (|IPE) ), < 1,V 1,20, (PE@®), <1,V ¢,
S|APE®)), [nax < 1,V £,2A[(PE®)), — 1,] <0,V ¢
=>[— L+ (PE@).]<0, V¢t
=>[— 21, + ET@)P + PE®)] <0,V ¢.
Then,from(4) ,we further have
V(x@) <o. (5
Therefore ,the system(1)is asymptotically stable and we complete the proof.
2.2 Robust Control Analysis and Design
Let us consider the following uncertain system
= (A, + AA@))x @) + (B, + AB(#))u(2), (6)
where A, and B, are the nominal constant matrices, AA(z) = (AA;(¢)) is an n X n time-
varying matrix which describes the system matrix parameter uncertainty’, AB(¢)=8(2) B, is
an mXm time-varying matrix,where 8(¢) denotes the input matrix parameter uncertainty,
B()+1=<¢ for some constant >0 and for all z.
Assumption 2 The pair (A,,B,) is controllable.
LetW, = (W.;;) ,W.; = (Aa;;/a) ,where Ae; = |AA;;(t) lauxs ¥ 2,and @ = @jpaestsj =1,

250+ yn,Let P, = (P),,where P is the n X n postitive definite symmetric matrix solution
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of the following Riccati equation

ATP + PA, — PB,R{'B}P + 21, = 0, )
where R, = (1/(28))Ry,R, is an m X m positive definite symmetric matrix which is given
by designers,and I, denotes the nXn identity matrix.

Remark 1 Equation (7) is a standard Riccati equation. Since (Aq,B,) is controllable
and R, and I, are positive definite symmetric matrices,the Riccati equation (7) has a unique
positive definite symmetric matrix solution P.

Theorem 1 If the system (6) subjecting to Assumption 2 satisfies

1
Jmax (PI'IWZ)J ;

where P is the solution of the Riccati equation (7),then the system (6) is asymptotically

a < (8)

stable for all admissible uncertainties via the following linear feedback control law

u(@) =— R;'BiPx(t) =— Kx(®). (9
Proof Let a Lyapunov function candidate be
Viz@®) = 2T @)Px(@). (10)

Then the derivative of V along the trajectory of (6) with the control law (9) gives
V(z®)) =2 ()Px(@) + 2" @)Pz(t) .
=T YATPz(t) + zTAAT () Px(t) + 4" (¢) (B, + AB()) Pz ()
4+ 2T()PAx(2) + 2T PAA@W 2 (@) + 2T @ P (B, + AB@))u(®)
=T ATPz2 () + 2T @)PAx (@) — 21 4 B@) YT () PB Ry By Px(t)
+ 2T (QAAT(OP + PAA®))x(t)
<aT(t)(AIP + PA, — 20PB,R;'BiP)z ()
+ 2T () (AAT ()P + PAA®))x(8)
=zT()(ATP + PA, — PB,R{'BiP)x(t)
+ 2T@YBAT@)P 4+ PAA@) Yz ()
=z2T(@)(— 2I, + AAT()P + PAA@))z= (). an

By Lemma 1,the proof of this theorem is completed.
Remark 2 For the nominal parameters (A,,B,) ,the control (9) is optimal with re-

spect to the linear quadratic index function whose weighting matrices are (21,,R0) 1. e.
J = r(ZxT ®)x (@) + «T @ Rou(e))de.
1]

2.3 Robust Controller Design Procedure

Based on the theory of Section 2.1 and 2. 2,we propose the following method to de-
sign a robust stabilization controller for uncertain systems with interval parameters.

Step 1 Find the range of system parameters for a given uncertain system and decide
the lower and upper bounds of the uncertain parameters.

Step 2 Decide the nominal parameters of the system (One can choose the central

points of the uncertain intervals as the design nominal parameters) and calculate the con-
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stant a.

Step 3 Choose the design matrix R, and solve the Riccati equation (7) to obtain the
solution P.

Step 4 Construct the feedback gain matrix

K = R;'BiP.

Step 5 Construct the matrix W, and calculate 0., (I>,,W.),. Then check the conditon
(8). If the inequality (8) holds,then stop. Otherwise,go to Step 3.

Remark 3 Like most practical design methods,the proposed procedure is iterative in
nature and several designs must be completed before the results can be judged acceptable.
In Step 5,by repeating Step 3 (i. e. rechoose R;) swe can obtain larger control gain so that
the condition (8) is satisfied.

The proposed design method is applicable to any uncertain system which can be writ-
ten in the form of (6). In the next section,this method is illustrated by a power system
load frequency control example.

3 Application to a Power System Load-Frequeny Control Example
3.1 Power System Model

In general,electrical power systems are complex nonlinear dynamical systems. For the
load-frequency control (LFC) problem, the usual practice is to linearize a power system
model around an operating point and then,based on the linearized model, develop control
laws. Since the power system is only expossed to small changes in load during its normal
operating, the linearized model can be used and will be sufficient to represent the power
system dynamics around the operation point. The block diagram of the linearized model for

a single control area is shown in Fig, 1(%77,

ﬂf’.{
1 T 1 X2 Kr )
145 144T; + 1asT)
Governor Turbine Power system

Fig. 1 Block diagram of single control area
In Fig. 1,the block K;/s is a classical integral control unit which is a part of the con-
ventional tie-line bias control in the case more than one control area™. The variables and
parameters in Fig. 1 are defined as follows:z,=Af: incremental frequency deviation in

Hz; z;=AP,. incremental change in generator output in p. u. MW x;=AX, :incremental

change in governor valve position in p. u. MW; :c4=jAfdt: incremental change in voltage
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angle in radians; AP, : load disturbance in p. u. MW ; AP, :incremental change in the speed-
changer position in p.u MW;T,: governor time constant in seconds; 7', :trubine time con-
stant in seconds;T ,:plant time constant in secounds; K, ; plant gain; R: speed regulation
due to governor action in Hz/p. u,MW;K;:integral control gain;u: control input from the
designed robust controller.

From the schematic diagram,the system dynamics can be described by the following

state differential equation

7, (8) tor /B K /T, 0 0 (@)
AN 0 —1/T, 1/T, 0 x(2)
#&@| |=1/RT, 0 —1T, —1T,||z®
2] LK 0 0 0 |lz@®
e T KP/TP
+ . w(t) + N AP,(). az
1/7, 0
0 L o

However,as system parameters can not be completely known and only their so called nomi-
nal values are known, a controller designed based on a fixed-parameter model may not
work properly for the actual plant.. For LFC problem,several authors have dealt with the
model parameter variations by using various control techniques such as variable-structrue

171and adaptive controlt®!, In the following ,the interval parameter uncertainties

contro
are taken into account. Suppose that the power system (12) has the following time-varying
parameter range: 1/T, € [a;,a,1,K,/T, € [a;,4,],1/T, € [a;5,a:1,1/T, € [a,,a,],and
1/RT, € [gs,;zs] for all ¢ where g; and aii=1,2,++,5, are the known lower and upper
bounds of uncertain interval parameters,respectively. Then we obtain the following matrix
form equation in the form of (6)

z(t) = Az () + Bu@) + F)AP,(¢), (13)
where z(¢) =[x, )z, (D xs )z, (2) T, A(t) , B(¢) and F(2) are time-varying matrices with
the appropriate dimensions.

3.2 Design and Simulation Results

Basing on the system parameters given in [7Jand [12],we consider the following pa-
rameter range: 1/7°,€ [0.078,0.0891,K,/T,€ [9. 433,10. 639],1/7,€ [3. 144, 3. 547];
1/T,€[11. 160,14. 2051,1/RT, € [3. 207,10. 762], and | B(z) | <0. 13 for all z. Let us
choose the central point of each parameter interval as the design nominal value. Then the

nominal matrices A,,B, and F, of the system (13) are as follows

—0.0885  10.0360 0 0
gl 0 — 3.3455 3. 3455 0
T | —6.0845 0 — 12.6825 — 12.6825|’

0.6 0 0 0
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0 [— 10, 0360
0 0
a . ] Fu = £l
12.6825 0
Ot 2 0

respectively. By calculating, we obtain the constant a= 3. 7775. According to the robust
controller design procedure given in Section 2. 3, when choosing R, =7. 2702E — 02, we
solve the Riccati equation (7) and obtain the solution
6. 7254E — 01 7. 2874E — 01 2.1574E — 02 6. 1745E — 01°
p_ 7.2874E — 01 1.2692E +- 00 4.0337E — 02 6. 3690E — 01
2. 167T4E — 02 4.0337E —02 1.8921E:—02 1.7624E—02
6.1745E — 01 6. 3690E — 01 1.7624E — 02 3.9156E + 00

1 i
Jmﬂx (PI'IWQ)J_
3. 7993 and the condition (8) holds. We obtain the following robust controller u(¢)=

—R;'BIPx(t)=—Kz(t), where K=[k, k, k; k,]=[3.7633 7.0363 3.3005 3.
0743].
Remark 4 By Theorem 1,the power system (13) is asymptotically stable for all ad-

Through calculation,we have op (P,W.),=0. 2632 so that a=3. 7775<

missable uncertainties via the linear and fixed controller. This means,under all admissable -

uncertainties ,limAf(¢) =0.

t—+o0

To show the control effectiveness
and the comparision results for the cas-
es with and without the proposed ro-
bust controller,two test cases are con- 0. 001
sidered under 0. 01 p. u. MW load
change,i. e. AP,=0. 01.

Case 1 Four different groups of -~

—0. 024

system parameters are chosen in the pa-
rameter region: Fig. 2 Case 1:4f(2) responses versus time for groups a~d.

a: the nominal parameters; b; 1/

T,=0.089,K,/T,=10. 639,1/T,=3. 547,1/T,=14. 205,1/RT,=10. 762; c: 1/T,=0.
078,K,/T,=9.433,1/T,=3.144,1/T,=11.160,1/RT,=3. 207; d; 1/7,=0. 089,K,/T.
=10.639,1/T,=3.144,1/T,=11.160,1/RT,=3. 207.

The simulations results of Af(¢) versus time for only having the integral controller are
shown in Fig. 2.

Remark 5 The simulation results in Fig. 2 show that under the parameter uncertain-
ties the classical integral controller can not ensure a good control performance for the sys-
tem. In fact,the eigenvalues of the system matrix A, which is corresponding to the parame-
ter group d are {—12. 0, —2.421,0. 0138+j2. 777}. This implies that, without the pro-
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posed robust controller,i. e. #(¢) =0,the

0. 00

system is unstable for the parameter ]

group d. This can also be seen in Fig. 2.
Case 2 With the same four groups

. —0.01~

of system parameters a~d as in Case 1,

but the obtained robust controller is used.

The simulation results of Af (¢) versus

time are shown in Fig. 3.

Remark 6 The simulation results in

t/s

Case 1 and 2 indicate that the obtained ro- R : T

bust load-frequency controller can ensure Fig, 3 Case 2:4f() responses versus time for groups a)~

the asymptotical stability of the overall a.
system for all admissible uncertainties and also improve the control performance of the
system.
4 Conclusion

In this paper,a general method to design a robust stabilization controller for uncertain
systems with interval parameters is established. A step-by-step iterative robust controller
design procedure is also proposed. During the design,the true system parameters are not
needed and only the lower and upper bounds of the plant unknown and time-varying pa-
rameters are required. The obtained robust controller is simple linear and fixed one but it
can tolerate all admissible uncertainties and ensure the asymptotical stability of the overall
system. The method is demonstrated by a power system load-frequency control example.
The simulation results have shown that the proposed robust controller ensure the asymp-
totical stability of the uncertain power system under the tested load change and improve
the control performance of the systm and all of these can not be guaranteed by the conven-

tional integral controller.

References

[1] Dorato,P. . Robust Control. New York:IEEE,1987

[2] Utkin,V. L. Variable Structure Systems with Sliding Modes. IEEE Trans. Automat. Contr. ,1977,AC-22:212—222

[3] Astrom,K. J. . Adaptive Control. Reading,Mass. :Addison-Wesley,1989

[4] Yedavalli,R. K. . Perturbation Bounds for Robust Stability in Linear State Space Methods. Int. J. Control,1985,42:
1507—1517

[5] Yedavalli,R. K. . Improved Measures of Stability Robustness for Linear State Space Methods. IEEE Trans. Automat.
Contr. ,1985,AC-30,577—579

[6] Bengiamin,N. N. and Chan,W. C. . Variable Structure Control of Electric Power Generation, IEEE Trans. Power Ap-
paratus and Systems,1982,101:376—380

[7] Sivaramakrishnan,A. Y. ,Hariharan,M. V. and Srisailam,M: C.. Design of Variable Structure Load-Frequency Con-
troller Using Pole Assignment Technique. Int. J. Control,1984,40:487—498

[8] Elgerd,O. L. and Fosha,C. E. . Optimum Megawatt-Frequency control of Multi-Area Lectric Energy Systems. IEEE



638 CONTROL THEORY AND APPLICATIONS Vol. 13

Trans. Power Apparatus and Systems,1970,89:556—563
[9] Chan,W.C. and Hsu,Y. Y.. Automatic Generation Control of Interconnected Power Systems Using Variable-Struc-
“ture Controller. IEE Proc. C,Gen. Trans, and Distrib. ,1981,128;:269—279

[10] Kanniah,]. , Tripatiny, S. C. , Malik,O. P. and Hope,G. S. . Microprocessor-Based Adaptive Load-Frequency Con-
trol. IEE Proc. C,Gen. , Trans, & Distrib, ,1984,131:121—128

[11] Valk,I., Vajta, M. , Keviczky, L. , Haber, R. , Hetthessy, J. and Kovacs, K. . Adaptive Load-Frequency Control of
Hungarian Power System. Automatica,1985,21:129—137

[12] Wang, Y. ,Zhou,R. and Wen,C. . Robust Load-Frequency Controller Design for Power Systems. IEE Proc. C, Gen.
Trans. & Distrib. ,1993,140,11—16

KBRS TR RGOSR

(=g
(EMETREEELA » T7N,510641)

WE: ASURE T —For s T K R RR WS R S0 S 1 ) 55 572 18 1 X ) 2 2]
DA Bt 2 o 5 00 28 0 L+ OCHROB T X 1) R B0AY b 57 T 3R 0 TR A 0 PR R R 7 4R 30 iy 32 ) 28
R R RIS (5 AR TR 2 07 20 A0 R0 58 P P 4R o ) 07 BTt — A v ) 2R 6 SRR S B ) 7
plIfISVR:: 8

RepiE. BN, KAERREAS: BHEK

A AR RA
BHI ILAT] 1006 4E48 4 15 431 50,





