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Abstract: In this paper, new sufficient conditions for stability of asynchronous sampled-da-
ta systems are presented. A new robust stability problem is proposed and preliminary results on
this problem is given.
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1 Introduction

Multirate digital systems have been a topic of intensive interest since the early 1950’s
due to the wide applications of computer technologies in industries. Waltont! and Glas-
son(® present a very comprehensive survey on the privious multirate methods in this area,
Franklin et al™ provides a very excellent book on the systematic treatment for analysis and
design of dynamical systems and controls. As we can see, the analysis and design of dy-
namical systems for synchronous sampling cases can not be easy generalize to the cases
where the asynchronous samplers are used.

In this paper, we also study the stability of generally formulated sampled-data sys-
tems which have a great potentiality of applications in digital control systems with multi-
rate sampling. Consider the following linear control system: .

2(2) = Ax(t) + Bu(t),

and we consider the digital feedback control problem. Let the time sequence denotes the
instants that the controller values are executed, that is, #(2) = u (%) on the interval £,<¢
<tss1. Leto, =ty —t sthe difference sequence o, may not be uniform due to the time de-
lay resulting from communication medium. As in linear time-invariant control theory, we
can use the feedback control Kz () to stabilize the system. Suppose 0, is bounded, if the
sampled system is stable in discrete-time case, then the closed-loop of the continuous-time
linear system with the sampled-data control is also stable in continuous-time sense. Thus,
we reduce the digital control problem to the stability analysis of the following time-varying
systems:

Zepr = P (g B2 (1
where {z,} is a given sequence and @ (. 5. ) is a given mapping. Ritchey and Franklin*’and

Halevi and Ray" came up with the similar problem. We will generalize the result in [4]in
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this paper.
2  Sufficient Conditions of Sampled-Data Systems
Now we return to the study of the stability of the system (1). We have the following
general sufficient condition.
Theorem 2.1 Suppose @ (fi41,%) is bounded, for any matrix norm | . | » group
the time interval {(t, t4,) | £ = 0,1,°+} &G into the following classesG,,*,G, , and G
= U::lG,», where
G, = {@stisy) € G| 0,0, < | & Ctiyistd | <o}, r=1,2,0,m
and 0, ,0,, 0, are certain positive numbers. Let p, denotes the freqqency (or probability)
that intervals in G happen to be in G,for 7 =1,2,++, m. Then (1) is exponentially stable if
ohiofzeeeohpy < 1. (2)
Proof Let n(k,r) denotes the numbers of intervals which happen to be in G, among
{Gistis) | i = 1,2,++,k} . Using the multiplicative property of matrix norm,we obtain
| Zisr | = | D Ggrs 2D+ @1sto) o ||
K| @ Gwrst) | ol @Gt || || 2o
< of* Vot Py ||z ||

“ [Uln(k'l)/k+ld‘2(k'2)/k+l"'OJI(L"")/k+1]k+1 " Xy ” . (3)
Since, for any» € {1,2,++,m} , we have
. (k,r)
1 m 71___;_ = 1P
R el

hence, we obtain
limoall(k'l)/k+laazl(k.2)/h+l._,o.;ln(k.m)/k+l = ghigle-eotn.

A—+oco

Thus, if ohoteealn < 1, from(3), we can conclude that the system (1) is exponentially
stable.

Remark To effectively use the above sufficient condition, we have to appropriately
choose a matrix norm so that ofigfz--afp is as small as possible. In [4], Ritchey and
Franklin assume that @ (£,.,,%) is diagonalizable and they use the matrix 2-norm to obtain
a sufficient condition for asymptotic stability of (1). In a similar manner, we can use any
matrix norm to obtain a more general sufficient condition. Let @ (411,8) = SIS, 7!

where I', is a diagonal matrix. Given a sequence of positive numbers {z} , dedfine

[r [T,
A, = | —ESi1S, =
* M 2 St a1

using this notation, we can give the following result.

Theorem 2.2 For any matrix norm || . || and any given sequence of positive num-
bers {s ) group the A’s and x's into numbered classes and define upper bounds §; and o;
such that || 4| <o for all the A's in class 4" and p<C§;for all ¢ 'sin class ” j”. Let p; and

q; denote the probability of occurence of sampling intervals with A in class i and z in class
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j, respectively. Then the system (1) is exponentially stable if
[Jos] Inm <1.
i j

Proof This can be proved in a similar manner as in [4].
Suppose that @ (tir1-:) is only dependent on the difference #,+,—# as we discussed in
section, we can reduce to the stability analysis of the following linear system:

Zorr = A (E)xs (4)
where &=t,,,—#;. This problem is also studied in [6], where A,(€) =exp(As&,) and the
sampling period &, is assumed to be independently identically distributed and the moment
stability is studied. The sufficient conditions for exponentially stability in Theorem 2. 1
and 2. 2 can be used to study almost sure stability of (4). In fact, we can further simplify
the sufficient condition for the system studied in [6] using the concept of matrix measure.
Given a matrix norm | * || , a matrix measure of a matrix A induced by the given matrix

norm is defined as

60
where I is the identity matrix with the same dimension as A. For detailed properties and
its applications, the reader may refer to [7]. Using the property of matrix measure, we
obtain

Theorem 2.3 Consider the system (4) with A,(§,) =exp (A,&.) ,we have the follow-
ing: (if the samplimg sequence {£,} is a random processthen the stability means almost
sure stability)

a) The system (4) is exponentially stable if there exists a matrix measure such that

k—oo

1w
lim 7;;: (A)HE, < 0.

b) Choose a matrix measure g ( * ), group G d=d{p (A,))} into a finite number of

classes. say,G,s s +Ga.where, _

G:= {p (A |p (A € Gy < p (A S puidyi = 1,2,0000m,
where go=—0o0 and g ,***, . are some apporopriately chosen numbers. Let ; denotes the
probability of occurence of x# (A:) in the class Gisi=1,2++, then (4) is exponentially sta-
ble if ”1#1+"2#2+"'+”;n#:n<0-

c) .If A, only assumes a finite number of matrices ,5ay s A € {F 1, Fyserr s Fu}y let mide-
notes the probability of occurence of A, assuming F; in a long run,then (4) is exponentially
stable if there exists a matrix measure p#( * ) such that m p (F1) +mpu (Fy) 4+
Rt (F)<0.

Proof b) and c) are just direct consequences of a). We only need to prove a). Let

|« || be the matrix norm which induces the matrix measure. Then,applying the proper-

ty of matrix measure || exp(At) | < exp(u (A)t),we have
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[N A N I el N 2y

< At o A ||z ||

= (eéﬂm,.)e,./k)k Izl -
From this, the proof can be easily completed.

In many applications, the sampling period sequence {&,} may only assume a finite
number of values and A, (&) only depends on £,). For simplicity of notations,we may as-
sume that &, is an integer-valued function, say, {1,2,+, N} andA, (&) =AW, &=
means that A () is the state transition matrix with the ¢ —th period. For such case, we
have the following result for stability.

Theorem 2.4 Let 7 denotes the probability of the occurence of state transition ma-
trix AG) in a long run, then (4) is exponentially stable if there exists a matrix norm

| « | such that
A [ A@) || e || AN || ™% < 1.

Proof This can be easily derived from Theorem 2. 1. Using a similar technique, we
obtain the following result.

Theorem 2.5 Let m, denotes the probabil'ity of the occurence of state transition ma-
trix A() in a long run. Suppose that A(1),-++, A(N) can be transformed using one single
similarity transformation into upper triangular forms
‘A (2) * * *

AG)  x *
I 1 ) i=1,2,'",n (5)
‘ A
then (4) is exponentially stable if and only if
A[(l)"JAI(Z)”z---/Ii(N)”N <1, {=1,2,"yn; (6)

If A1), ,A(N) pairwise commute,then they can be transform using a single similarity
transformation into the forms (5), hence (4) is exponentially stable if and only if (6)
holds.

In [5], Halevi and Ray studied the stability of feedback control systems with commu-
nication delays. It is shown that when a control system shares a single communicaﬁon
medium through the feedback loop, time delay will occur in the feedback loop, the closed-
loop system can be modelled as a system with communication delay. When the time delay
is periodic, Halevi and Ray provided a sufficient condition for the stability of the closed-
loop system. Using our notations in the above, we restate their result in the following:If
the samping sequence {&;} has a period M>>0,1. e. ;§ern=&sthen (4) is exponentially sta-
ble if the matrix A(Eu_1)AEy_,)+ A(&,) is Schur stable, i.e. , its eigenvalues are inside

the unit circle . This motivates the following problem : Given a finite number of matrices
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A1), A(2),+,A(N) and a finite number of integers iy,izs**"»1, € {1,2,+,N}, what is
the condition for the matrix AG) AG) - AU, to be (Schur) stable? For this problem,
we have the following result.
Theorem 2.6 a) The matrix AG) - AG,) s stable if and only if there exists a ma-
trix norm || ¢ || such that [ AG - AG,) || <1 ; The matrixis also stable if there ex-
ists a matrix norm || ¢ || such that | AG) || <1for any r=1,2,sp-
b) The matrix AG) " A(,) is stable if there exists a positive definite matrix P such
that AT(i.)PA(,) —P is a negative definite matrix for any r=1,2,*,p.
Proof a) This can be proved by the fact that a matrix A is stable if its spectral radius
p(AY<1. ‘
b) From Lyapunov stability theory, A is stable if and only if there exists a positive
definite matrix P such that ATPA—Pisa negative definite. We use P>Q to denote that P
—Q is a positive definite matrix for any positive definite matrices P and Q. If, for any r=
1,2, p» positive matrix P satisfies QG AT IPAG,)—P<0, then '
[AG,) = AGHTPLAGD - AGH]1—P
= AT(i,) e ATGE)IPAG) AG,) — ATG,) ATGOQUGDAG + AG) — P
< ATG,)w ATGIPAG) - AG) — P < ATG,)PAG,) — P <O.

From this, the matrix AG) A(,) is stable.

3 Conclusion

In this paper, we study the stability of sampled-data systems. Some very general suf-
ficient conditions are obtained using the multiplicative property of matrix norm. As we ob-
served that different choice of matrix norm gives different sufficient condition for (almost

sure) stability.
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