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Robustness of Higher-Order P-Type Learning Control *

SUN Mingxuan

(Department of Electrical Engineering,Xi’an Institute of Technology * Xi’an,710032,PRC)

Abstract; A feedback-assisted iterative learning control scheme for general nonlinear systems is
proposed. With the aid of linearization along the desired trajectories, the asymptotic boundedness of
the control process is proved in the presence of reinitialization errors and state and output periodic
disturbances. the uniform convergence of the output error is given under asymptotically repetitive in-
titial conditions and disturabance constraints. A simulation example is presented to demonstrate the
robustness performance of the proposed learning controller.
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1 Introduction

The past decade has been characterized by growing interest in the study of iterative
learning control systems (ILCS)"~*), In the existing theory,from practical point of view, the
robustness problem of ILCS is critical in the presence of the system state and output distur-
bances and errors of initialization. Such problem was first treated by Arimoto et al®for the
case of PID-type updating law with the aid of linearization of robotic dynamics,and then by
Heinzinger et al Jusing D-type updating law for a class of nonlinear systems. It was showed
that the iterative trajectories converge to a neighborhood of the desired trajectories as the ini-
tial state errors,the state and output disturbances are bounded. However,the system conver-
gence can not be guaranteed unless the bounds on the initial state errors and the state and
output disturbances are zero. In previous papers we have extended the result to a feedback-
assisted Pl-type learning scheme'), It has been shown that this kind of updating law. can be
used for tracking control of a wider variety of nonlinear systems. In this paper,with respect
to the existence of disturbaces and perturbed intial conditions , we still devote to considering
robustness problem of learning control for general nonlinear systems using a feedback-assist-
ed higher-order P-type updating law.
2 Problem Formulation and Preliminaries

Consider a general nonlinear dynamic system

(1) = F(@@) suy () 12) + w, (1), (1a)
Y0 = g(z (@) se, () 28) + v (1), (1b)

where £ is the iterative index. For allz € [0,7Jand V k,2,(t) € R",u,(t) € K",y @) € k",
wi(¢) € X" and v, (2) € &”. In addition,the following assumption are made .

A1) Along a desired trajectory pair (x,(t) yu,(#)) » the function gy, *)in (1H) can be

represented as
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g (@ (8)uy (2)58) = C@ () + DWuy (&) + h(z, (2)ui(2)42),

where C(2) and D(¢) are the partial derivatives

@) = 35) ,D(z)=(a—g) .
Idyud .l'd'lld

dx du

A2) The functions f(+, *, «)andh ( » , =, * ) are uniformly globally Lipschitz in x and
« on the interval [0,7"] for some constants k; and &, .

Use the feedback-assisted learning controller of the form

wy(8) = wp(8) + upr (), (2a)

upa(t) = Qe (1), (2b)
N

Urrar (B) = 2 {Pi@®uy i () + Q)i ()}, (2¢)

i=]
where ¢,(t) = y, (&) — v,(¢) ,and v,(z) is the desired output. In the sequel,the vector with
suffix d represents the correspondent desired vector. To assist the presentation of our results
we need the following lemma:
Lemma 1 Let {a,} be a positive sequence defined as
a << Pap + Pras; + 0 Pvaey +dis R =1,2,0
with given initial conditions a,,i =1 — N,2 — N,--, — 1,0, and {d,} is a given positive se-

quence, If

N
pi=0, i=1,2,~,N, and >)p <1 (3)

i=1
holds ,then d, << d implies that lir]r(l supf{a,} << LN i (4a)

i EP;

i=1

lim{d,} = d. implies that liT sup{a,} < —d+ (4b)
k—+co —-oa

1 — ZP,
i=1

Proof The proof of (4a) is omitted. Consider a sequence {b,} defined by

by = o, + Obi—y + o+ Pibin + d, (5
with initial conditions b, = ¢;,{ =1 — N,2 — N,--, — 1,0, Apparently,one has
alz<bk’k:192v"' (6)
N

due to ;== 0,i =1,2,++,N . The condition E £; <1 implies that the discrete time system de-

i=1

scribed by (5) is asymptotically stable,and hence
N
1= >0 limb, = d... (7
i=1 -~
Combining (6)and (7),one can conclude that (4b) holds.
For brevity,in this paper we denote A(+), = (*)y — (+)4,0(*); = (*)pp; — (*)y
3 ILCS with Uncertain Initial Conditions and Periodic Disturbances
In this section we consider the case:

A3) The controlled system (1) is perturbed by the disturbances with period T° , namely,
w, (8) = w(t) v (t) = v(t),w,(t) = w(),v, () =v(t),t € [0,7], and the uncertain but
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bounded reinitialization error || Az,(0) || << 6,0,V k.
Theorem 1 Suppose that iterative learning control system (1), (2) satisfies Assump-

tions A1)~A3),and the learning gains I>;(¢) ,Q;(t),i = 1,2,+-,N and Q,(¢) are chosen such

that
N
WEiG= (82)
i=1
=y N L A g5
a >0, Zai/ao<1s (8b)
i=1

where a, = Ei[r(}fﬂ{oto(t)};Oto(t) = +QWDWI || ' — & | Q@) || ya; = sup {a(®)},
@) = || P;@) — QDWW || + A || QW || .i = 1,2,%+sN, then the control input ,(z)

converges to a neighborhood of the desired control input «,(¢) for t € [0,77] as £ — oo . Fur-

thermore, the radius of the neighborhood is zero if the bound &,, is zero.

N
Proof Denoting j = # — i 4+ 1 and choosing P;(¢) such that EP,-(L‘) = I ,we get

i=1

N
(I 4+ QD@ ) Auyy () = D) {P, 1) — Q@)D () }ou,(2)

i=1

N
— DRI {C@ Dz, (8) + Ak, + Av(1)}.

i=0

Taking the norm in both sides gives

N
ay(2) || Dy, @) || < D7) || Ay 2) ||
i=1

N
+ 2@ I {CICW | + k) [l Az; ) | + | doye) | 30 (9)
i=0

and further taking the A- norm of (9) yields

N N
% || Bugyy |2 << Zai I Bu; |4 + E(L‘{(f + e | Azl + Av; || 4}, (10)
i=1 i=0
where ¢ = sup [[C@®) || ,¢; = sup | Q@) || . Now, writing the integral expression for
te0.T] te[0,T]

x,;(¢) and using the Bellman-Gronwall lemma

Iz, | = || Az, 0) + j (AF, + Aw,() }dr |

< || Az;(0) || e + J et Ok Auy(r) || + | Aw;(r) | ).
[1]
Multipling both sides of above eqn. by e ™,z € [0,7"], we have
I Az () [ e < || Az (0) [l %™ 4= Chy || Ay [l 2 + || Ao | ))J'e’v“-”dr.
[}

1 — e%—dT
s LE
Ay 12 < || Az CO) || A= Ay |l Buj |3+ | Ay || 0. an
Substituting (11) into (10) gives

Defining A, = ,» and choosing A such that 2 > %, give rise to

N
to ll Betiyy |2 << 2#,' | A || 3+ €4rs (12)
i=1
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N
where g, = ao - (I();{fkf(c + &) WM = 6_1,' Sn q,‘/‘fkf(C + k) 9$k+1 i EQi{(C -+ k/.) ” AI_,'(O) ” +

i=0

ACe + k) | Aw; || 2+ || Ao, | :}. According to (8b),we can choose Alarge enough such that
N

Z;A,-/,uo < 1. By Lemma 1 and Assumption A3),the control input error is thus bounded as
i=1

N
(c + kb qu '
lirhnsup | Au, || 2 << =L 13)

N
Fo — Z#i
i=1

In addition,we obtain that the right-hand term of eqn. (13) is zero as b,, = 0. This completes

the proof.

Remark 1 Using eqn. (11) we can obtain that || Az, || ,is asymptotically bounded with
the bound b, = b., + Askb, where b, is the right-hand term of eqn. (13). To obtain the result
for |l es || 2 we can use eqn. (1b) with || Aw, ||, and || Az, || 2 being bounded, namely, an
asymptotic bound is b, = (¢ + k)b, + (d + k)b, where d = Sup | D& || . It has also
demonstrated that the actual output converges to the desired output as b, tends to zero ,even
in the presence of periodic disturbances.

4 ILCS with Asymptotically Repetitive Initial Conditions and Disturbance
Constraints ;
In this section,we,restrict our consideration to a simpler form of updating law by chang-

ing (2¢) to the following form

N
rrar () = (@) + DJQi(8)es iy (). (14)
i=1

A4) For all 2 and ¢ € [0,T7] ,the disturbances w,(+) and v,(+) and the initial setting
1,(0) are assumed to satisfy that
| wer () — W) | <bus [0 () — v || <bs || 2440 (0) — 2:(0) || < bson
Theorem 2 Suppose that iterative learning control system (1), (2a),(2b), (14) satis-
fies Assumptions A1),A2),A4),and the learning gains Q;(¢),7 = 0,1,2,*,N are chosen
such that

N
BatNott WSRIE, figihemr) ; (15)

=1
where f, = lei[r;fﬂ{,@o(t)},ﬂo(t) = | + DWOQXRWI '™ — bIlQ®WI, B =
IGS[L;E[']{ﬂi(t)}’ ﬂ](t) = “ I - D(f)Q](t) ” _l_ k/, ” Ql(t) ” 9,Bi(t) S ” D(f)Q.(t) ” +

k|| Q) || vi = 2,3,++,N ,then the output y,(#) converges to a neighborhood of the desired
output y,(¢) fort € [0,7] as £—> oo, Furthermore,the output error e;(¢) converges uniformly
to zero fort € [0,1] as & — oo if lim 6x,(0) = 0, lim Sw,(t) = 0, lim 8v,(¢) = 0.

b—co koo

Proof The output error at the (2 4 1) th iteration can be written as
e (8) =e () — {31 (&) — 3D}
=e, (1) — C)x,(¢) — D()0u,(t) — 0h,(t) — dv, (8)
=[I + DM@ 1[I — D®)Q, (&) Je, (2D
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u Zle)(z)Q,-(t)ej(f) — C@)0xs(®) — Shy(t) — Sy (1)}

where j = # — i + 1. Computing the norm of both sides yields

N
XY PO RS AN FACN
i=1

S ” C® ” + &) ” 0x, (1) ” + “ 0v, (¢) ” (16)
and further taking the A- norm of (16) yields

N N
Bollewar 1< DB Ml e Il a4 Ce 4 &) | 8z 12 + |l Sve | 1o an

i=1

where ¢ = sup_ I C) ||, Through similar argument to eqn. (11),we obtain as >k,
t€[0.T
[0z 12 << 1 82 (O || + sk, || w4+ | S |l 0, (18)

1 — AT
where A, = I, Taking the A- norm of eqn. (2a) gives
s

” auk ” A == Lq: ” e/ ” A (19)

where q; = s[upﬂ | Q) || . Substituting (19) into (18),we have
te[0,T]

0 [l 4 << [ 82uCO) || + /‘/ka(I. [e; 14 + A || Swy | s (20)

Substituting (20) into (17),we have

N
o ll err || 2 << E’?i Il el s+ Ceys : 21)

=1

where My = 7—‘}0 - (Iu/{j'kf(c + kl,)o?f = B,‘ +- q;Afkf(C s kl|)9§k+l = (¢ + kh) ” aVTI:(O) ” + Af(c
+ &) || dw, [l s + || dv, || 1. Due to the condition (15),it is possible to choose 4 large enough

such that 277, /M < 1. Thus,by Lemma 1,the output error converges to a neighborhood of

i=1

radius as

— (e + k)b, + /\f(c + kDb, + b

Zm
i=1

Note that {iy = 0 as 6x,(0) = 0,8w,(¢) = 0, and dv,(t) = 0.Y k. Thus,the output error

llmsup lexl 2 << (22)

converges to zero. By Lemma 1,we {urther obtain that if lim(?xL(O) = 0,liméw, (t) = 0, and
o

limév,(t) = 0, the output error also converges to zero. i. e. , llmp,¢ () =0fort € [0,7]. This

ko3

completes the proof.

Remark 2 In Theorem 2,the convergence only requires that 2,(0) »w, (1), and v,(¢) are
asymptotically invariant during iterations. It is a milder condition for convergence than that
required by previous literature. Note that the size of the error bound in eqn. (22) can be ad-

justed by the learning gain of the feedback output error. From the above theorem, there exist
N

M > 0 and a positive integer K such that || ¢, << M/{y, — 27],} as £ > K. For the given

=]

N
€ >> 0 ,if the learning gain Q, () is chosen so that Mo >M/6 + 277,»,6 =¢ee ", then |[ e, () |

1=



No. 1 Robustness of Higher-Otder P-Type Learning Control 17

< efor eachz € [0.T].
5 Simulation
In this section a numerical example is presented to illustrate the performance of iterative

learning control scheme described above. Consider the following nonlinear ILCS

1 () = x,(t), (23a1)
£, (1) =— 2, (t) — 2x,(2) ¥ u(&) + 0.5sinCx; @)ulr)), (23a2)
y(@) = 2, () + ult), : (23b)
g () = u (t) + qoeHl(tj + qlék(t), “ (23c)

where t € [0,1]. Suppose the desired output trajectory is given by setting u,(t) = sin(6. 28¢)
, and 24(0) = 23(0) = 0. 0. Let the initial input %,(z) = 0. 0. The tolerance root mean square
of the output error is assumed to be rms=0. 005.
We have conducted simulation for two 30 94 (D)

cases by choosing g, = 0. 4,q;, = 0. 8; one is
for the initial state bias xi(0) = 0. 0,x5(0)
= 0. 5. It requires four iterations such that
the output converges to the desired trajecto-
ry with the given accuracy. The other is the
case for x1(0) = 0.0,2:(0) = 0.5 4+ 0.

Sexp(— k). In this case,the six iterations

= 0.75F

are sufficient to generate a trajectory to re- —1.5L L . : :
0 0,25 0.5 0.75 1

covery the desired.

ig. histori itl 0) =0,
To compare the performance ot the Fig.1 Plant output histories with x}(0)

proposed controller,the simulations are also ) ratvh
performed for the UBB initial condition and () s yg (1)
output disturbance. Let ¢, = 0. 6,¢g; = 0. 9. El
Fig. 1 shows the iteration histories of the
output with the initial condition x}(0) = 0.
0,25(0) = 0. 5cos(%). Fig. 2 shows the out-
put trajectories when a unit disturbance is
introduced in the output of the ILCS in the _ 4
interval [0.5,0.6].

5 | L B )

Al ] —1. =
© Conclusion 5 0.25 0.5 0.75 1

In the presence of periodic disturbances
of the system state and output,and uncer- Fig. 2 Oupul recovery histories from the disturbance
tain but bounded initial conditions,it has been proved that the asymptotic boundedness of the
control input, state, and output of a class general nonlinear systems,and shown that the
bounds are only dependent on the bound on the initial state errors but independent of the pe-
riodic disturbances. Under an assumption on boundedness of the disturbances and the initail

conditions between two successive trials a new asymptotic bound of the cutput error has been
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obtained in this paper. It deserves to note that the convergence can be guaranteed as the ini-

tial conditions and disturbances are asymptotically invariant during iterations.
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