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Circular Pole and Variance-Constrained Design
for Linear Discrete Systems *
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Abstract: The problem of controller design for linear discrete systems with circular pole and
variance constraints is considered in this paper. The goal of this problem is to design the controller
such that the closed-loop system satisfies the prespecified circular pole constraints and the prespeci-
fied individual variance constraints,simultaneously. An algebraic, modified Riccati equation approach
is developed to solve the above problem.
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1 Introduction

The performance requirements of many engineering control problems are naturally de-
scribed in terms of the acceptable variance values of the system states. LQG controllers mini-
mize a linear quadratic performance index which lacks guaranteed variance constraints with
respect to individual system states. Recently,the covariance control theory!*~*lwas developed
to provided a more direct methodology for achieving the individual variance constraint than
the LLQG control theory. However, much of the covariance control literature focuses on the
steady-state behavior and the transient properties are seldom considered. To this end,this pa-
per will introduce an approach which deals with the circular pole assignment techniquet®*and
individual variance constraint for linear discrete systems,simultaneously.

Most previous work about pole assignment focuses on the problem of exact pole assign-
ment, It is often the case in practice,however,that exact closed-loop pole locations are not re-
quired. Rather,because the problem considered in this paper is a multiobjective design task,
the exact locations of assignable poles might be difficult to attain. Owing to the above impor-
tant reasons,an attempt will be made in this work to design controllers which can achieve a
specified state covariance upper bound,such that the variance of each state meets the speci-
fied constraints and such that the closed-loop poles lie within a specified circular region. An
effective, algebraic, modified Riccati equation approach is developed to solve the addressed
problem.

2 Problem Formulation and Preliminaries

Consider the stationary vector process x generated by

x(k 4 1) = Ax(k) + Bu(k) + Dw(k). 2.1
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Here 2 € ®',u € R",w € ®™and A,B,D are coustani matrices with appropriate dimen-
sions. w is a zero mean white noise process with covariance W > 0, and w (&) and 2(0) are un-
correlated. The notation “[ « ]>>0" and “[ « 10", respectively ,denote positive definite and
positive semidefinite. The pair (A,B) and (A,D) are,respectively ;assumed to be stabilizable
and controllable.

When a state feedback control law

wu(l) = Gx (k) (2B
is applied to system (2. 1), a closed-loop system is obtained as
x(k+ 1) = A,x(k) + Dw(k), A = A+ BG. (2:'83))
The steady-state covariance X of the closed-loop system defined as
e — limE[x(k)atT(/c)] (2. 4)
is the solution to the following discrete Lyapunov equation
X = A XAl + DWD", (2.5)
We consider a circular region DD(¢.r) with the center I

atq + j0(g == 0) and the radius » which may be shown in

Fig. 1 for the discrete system. AT
(¢

Now, we may conclude that circular pole and vari-

ance-constrained design (CPVCD) problem considesed in — =l Rl
this paper is to determine the controller G such that the kr'//
following performance criteria are satisfied.
a) The individual state variance constraints are satis- \“‘—’—"’
fied,i. e. Fig. 1 Circular region D(g.r? in the unit disk
(X<, (=1,2,-,n, (2. 6a)
where [ X, is the ith diagonal element of X .and o,(f = 1,2,+--,n,) denotes the root-mean

squared value constraints for the variance of system state.
b) The closed-loop poles are constrained to lie within the circular region D{g,»).1. e ,
o(A) T Dg,r). (2. 6h)
Theorem 2.1 Given a circular region D{(g.7) . Then the requirement b) is satisfied 1f
the following matrix equation
AQAT + (¢F — r)RQ + DWD' — ¢(ARQ + QAT = 0 (447

has a positive definite solution @ . Furthermore,in this case,if the positive definite solution Q

meets
(A, — (_I_h_;j,‘;;;,_j;i HQ + QA, — Sl sy J])r <0 (2.8)
2q 2q
then the steady-state covariance X given by (2. 4) exists and satisfies
X << Q. (2.9

Proof See the Appendix.
By using the above theorem.we can assign a desived value 1o the positive definite matrix
Q + such that this matrix Q meets

(R sl aly = 1.2, 0, (2.90)
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and seek the set of the feedback controller G which satisfies (2. 7), (2. 8) for the specified
Q . If such a controller exists and can be obtained,then from Theorem 2. 1,we will have [ X7,
<[Q) L o*(i = 1,2, ,n,) and 6(A,) C D(g,r), and therefore the design task will be ac-
complished. The above problem is referred to as the “Q-matrix assignment” problem and
then the problem CPVCD can be converted to such an auxiliary “Q-matrix assignment” prob-
lem.
3 Main Results and Derivation

Lemma 3.1 Let M € R""and N € R"*(m < p). There exists a matrix V which sat-

isfies simultaneously

N=MV, VW =1 3.1
if and only if
MM"™ = NN". (3.2)
In this case,a general solution for V can be expressed as
I 07 . -
V = VM|: ]V}:,, U e RO X emrpp UUT == (3.23)
0o U
where V; and Vy come from the singular value decompositions (SVD) of M and N ,respec-
tively,
Zy 0O Zy 01[Vin
o5 e wa v )
M 0 O M [ M1 MZ.—J O O Lz
Zy 07 Zy 0V
T B T L |
'cll'ld rM=rank(M), UM == UNg ZM:ZN-

To make the problem more tractable,we give the following definition.

Definition 3.1 Given a desired circular region D(q,r) . Let Q be a prespecified positive
definite matrix which meets (2. 10). Then Q is called a D -assignable matrix if there exists a
set of controllers G such that the equation (2.7) has the positive definite solution @ and this
Q meets the inequality (2. 8).

Now ,let @ be some prespecified positive definite matrix and Q b the unique positive def-
inite square root of @ . To obtain the conditions for the existence of desired controllers, G,

for the circular pole and variance-constrained design problem,we can rearrange (2. 7) as fol-

lows : p
(AQV — gV (AQ — qQV)" = r'Q — DWD". (3.4
Consider (3. 4),since its left-hand side is positive semidefinite, & is required to meet
Q= (1/rHDWDt (3.5)

which gives the lower bound of @ .
Now we first define P = r2Q — DWDT ,and take the square root of I’

1) e Y"Ivr, ,1, e j!:*\il"J ,‘(ll'. (3. 6)
From Lemma 3.1 and (3.6),(3.4) is equivalent to
ARV — qQr =TV (3.7a)
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or
BG=TVQ '? +ql — A (3. 7b)
where V € R"™"*is some orthogonal matrix.
Hence , we obtain the following result.
Lemma 3.2 Suppose that(3.5) is satis{lied. Equation (2. 7) has a solution for G if and
only if (3.7a) or (3.7b) has a solution for G .
Lemma 3. 3"]  There exists an orthogonal matrix V such that (3. 7b) has a solution for
G ,if and only if there.exists an orthogonal matrix V such that :
I—BBHYAVQ 2+ gl — A) =0 (3.8
where B* denotes the Moore-Penrose inverse of B .

Now ,prior to considering the inequality (2. 8),we first take the following SVD,

1y Zy 0 }
M=U-BB")T=Uy o (3.9
=0 O

\ Zy 50
N=({—BB")(A—qDQ'* =U, b il V. (3.10)
Lemma 3. 4 The inequality (2. 8) is satisfied for the positive definite solution Q of

(2. 7) if and only if,there exists an orthogonal matrix U € . X ™70 qatisfying
= 2 _ =5

TVQU + vy < L= g (3. 11)

0
U
the square root of 7’Q — DWDT,

Proof From (3.4),(3.7)and (3. 8),we know that the equation (2. 7) has a positive

I i
where V = VM[O ]V}\,,r“ =rapkM and M ,N,V .,V yare defined as in (3. 9),(3.10).7T is

definite solution Q if and only if

L =TVQ™ " + ¢l (3.12)
where V € X" is an orthogonal matrix and this matrix V satisfies
(I — BB)TV = (I — BB*)(A — ¢[DQ'"* (3.13)
or
N =MV, (3.14)

By using Lemma 3. 1,the orthogonal matrix V satisfying (3. 14) can be expressed as
. [1 O]VT U € T oo (3.15)
M () (J N e <19

where matrix U is arbitrary orthogonal. Substituting (3. 12) and (3. 15) into (2. 8) yields
(3.11). This proves the lemma.

Theorem 3.1 A specified positive definite matrix @ satisfying (2. 10), (3. 5) is -
assignable.if and only if

D d — BBH)[rQ — DWD" — (A — ¢DDQ(A — ¢ - BB*) = 0. (3.16)

2) There exists an orthogonal matrix V such thar

— 2 .2
TvQr + avery < L E g, (3.17)
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where the orthogonal matrix V is definedin (3. 15) and T"is the sqaure root of 7 Q — DW D™,
Proof It is clear from Lemma 3. 2,Lemma 3. 3 and Lemma 3. 4 that the given Q >
0 satisfying (2.10), (3.5) is D-assignable if and only if ,there exists an orthogonal matrix V'
satisfying (3. 8) and (3.17). We can rewrite (3. 8) as the following
(I — BBY)TV = (I — BBT) (A — ¢DHQ'A (3.18)
Using Lemma 3. 1,(3. 18) has an orthogonal solution V if and only if
[d — BBHTILU — BBHT]
= [ — BB (A —~ ¢DDQV*][U — BB*)(A — ¢DQ*]" . et 3. 19D
or equivalently
(I — BB*)(»'Q — DWD™)(I — BB*)
= — BB")[(A — qDDQ(A — ¢ID"]U — BB*) (3.20)
and the orthogonal solution V of (3.19) can be expressed as (3.15). The equation (3.21) is
equivalent to (3.17). This proves the theorem. vl
In what follows,the solutions of the circular pole and variance-constrained design prob-
lem is introduced.
Theorem 3.2 Assume that the given positive definite matrix Q satisfying the condition
(2.10),(3.5) is D -assignable,then the set of all controllers that assign this Q is parameter-

ized as
‘ : I 0 ]
G =B (IVy . WoQrYE & gl =AY+ Z BT BZ (3.2

where I'T" = 'Q — DWDT,Z € K"+ is arbitrary, U € R WX 4g arbitrary orthogo-
nal, ry = rankM ,and M,N,V,,Vy are defined as in (3. 9),(3.10).

Proof From the proof of Theorem 3. 1,we know that the glvenQ is D- assxgnable if and
only if there exists a solution G to (3. 7b) for some orthogonal matrix V satis{ying (3. 18).
Hence ,a general solution of (3. 7b) is R g :

G = B (hVQieinglos A 402 = B BZ (3.22)
where V defined in (3. 15) is the orthogonal matrix satisfying the inequality (3. 18) Thls
proves the theorem.

Theorem 3. 2 provides the set of all feedback controllers G which can achleve a specified
circular region for closed-loop poles and a specified state covariance upper bound Q for (2. 7).
By appropriately assigning & with [Q],-; <'J,»2'. where o; have been defined in (2. 6a).then from
(2.9),we have [ X |, < [Q], =< of. Hence,the variance constraints (2. 6a) and the .c'u'-cular
pole constraints (2. 6h) will be achieved by using the feedback controllers G which can be ob-
tained from (3. 22),and the following result is easily accessible.

Theorem 3.3 Given the desired circular region D(g,7) and the individual state vari-
ance-constraints o2 (; = 1,2,-+,n,). Assume that a specified positive definite matrix Q satis-
fying (2.10),(3.5) is D- assignable,i. e. .this @ meets (3.16),(3. 17). Then the solution of
the circular pole and variance-constrained design problem can be obtained from (3. 21).

4 A Numerical Example

Consider the linear stochastic discrete system(2. 1) where the parameters are given as
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0.6 0 0 0 0 0.2
A= 1|0 1.5 11, B=i1 0, D=0 |, W=I, 4.1
0 Of 515 0 1 0
We assume that the constraints for variance of system states are
(X1 <1.41, [X].<2.23, [X]<1.15 (4.2)
and the condition for closed-loop poles is
Dg.r) = D(0.5,0. 2). (4. 3)

Subject to the conditions (3.5),(3.16) and the constraints (4. 2), (4. 3) ,we can choose
an appropriate @ -matrix as
r4/3 0.01 0
Q= 10.01 2 orN

0 0.1 1
Using the results provided in the previous section,we can obtain
0. 11546 0.00101 — 0.00003 1 0 0
T= 0. 00101 0. 28272 0.00829 |, Vy=Vy= ( — 1 0
— 0.00003 0.00829 0.19983 LO 0 =11

It is easy to test that the condition (3.17) is satisfied for U = I,. Therefore,substituting
AB TV, VN, Q Vi qand U = 1,,Z = Ointo (3. 21) yields a desired feedback controller
0. 0002 — 0. 80001 =]
[— 0. 00001 0 — 0. 80001]'
Finally, by simulating the responses of this example,we can obtain the variance of
states,i. e, , var(xr,;(k)) = 1. 21236, var(x,(£)) = 1. 83411,var(x;(k)) == 0. 90024. More-
over,the poles of closed-loop system are 0. 6,0. 69999,0. 69999, Clearly.these results satisfy

the constraints (4. 2) and (4. 3).
S Conclusions

This paper has introduced a theory for designing feedback controllers such that the
closed-loop system meets the prespecified variance and circular pole constraints. A simple ,ef-
fective ,generalized Lyapunov equation approach has been developed to solve the above prob-
lem. It is shown that the above problem can be converted to “Q-matrix assignment” problem
and this Q-matrix assignment problem has been solved completely. The existence conditions
of the desired controllers and the set of solutions have been introduced in Section 3 of the

present paper.
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Appendix

Proof of Theorem 2. 1.

The proof of (2. 6b) can he made by a simple modification of the proof of Lemma 1 in [6]. Furthermore,
it is well known that the steady-state covariance X of the system(2. 3) satisfies (2.5) where the matrix A. is
stable,i, e. ,the poles of A, are located within the unit disk with the center at the origin.

To prove (2. 9),subtract (2.5) from (2.7) to obtain

A Q- XA — Q—X) =q(AQ +QAD — (¢ — ¥ + Q.
From the Lyapunov stability theory,we know that if
I = qARQ + QAN — (¢ —rt + DR < 0, (AD
then @ — X > 0 by virtue of the stability of A, . Clearly (A1) holds if ¢ = 0. Therefore,it ‘is assumed that ¢

> 0. We can rewrite (A1) as the following:
2 _ . .2 K A .
I=ql4 == F1na + e - =L pm <0 (A2)

G2 = r +1
2q
Lyapunov stability theory,we now prove that a(Y) CC C, , where C, = {s € Z|Re(s) < 0,5 is a complex

LetY = A, — =I. To show that the positive definite matrix @ satisfying (A2) exists,from the

plane} . Noting that 0(A.) C D{(g,r) and g + <1 ,we have Re(s) <¢q 4- » ,where s is an eigenvalue of A, ,

and

2" 2 A Fda (AT -} -
Re — £l g, =2l El(it(" +17=11<0

which ytelds ¢(Y) — C,. This proves Theorem 2. 1.
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