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A Note on the Decoupling Controller Design
for Unity Feedback System
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Abstract: In order to have a solution for the decoupling controller, doubly-coprime factorization tech-
nique is employed for investigating the constraints on the assigned diagonal closed-loop transfer matrix for the
unity feedback system with a non-square, rational and proper plant. When the constraints are satisfied ,
computation formulas, employing existing algorithms for time domain analysis, for the controller are de-
rived. '
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1  Introduction . y
w %
The design of a rational, proper decoupling con- i K(s) P(s)

troller K for a unity feedback closed-loop system with

a given rational, proper plant P shown in the figure
has been studied by many investigatorst!~*], Fig. 1 Unity feedback closed-loop system

The solvability of this problem depends on the appropriate assignment of the ideal diagonal closed-
loop transfer matrix G.=PK (I+PK)~" from input W to output Y. For a square and invertible plant
P, Lin and Hsieh[* has recently put forward the constraints on the assigned diagonal closed-loop trans-
fer matrix, and has given an algorithm for the computation of the controller. We generalized Lin} re-
sults to the case of non-square plants, and found that in this case the constraints on the diagonal
closed-loop transfer matrix are almost in parallel to that of Lin. For the sake of investigation, we
started our approach from the doubly-coprime factorization; however, we found eventually that this
factorization is actually not necessary. The key point of the computation of the controller X lies in the
inversion of a non-square numerical matrix. By referring to the Work of some other authorst®~# , we
modified the inversion methods for time domian analysis by employing the singular value decomposi-
tion.
2  Constraints on the Closed-Loop Transfer Matrix

Let P: [4,B,C,D] be an pXm(p<m) rational and proper transfer matrix, not necessaty sta-
ble. The doubly-coprime factorization of P isl®]

P=NM"'=M"'N, (1)
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M Y X -Y
l:N X}:[—N M} ‘%
where *
N.[A—BF,B,C—DF,D], M. A—BF,B,—F,I], (3
N.[4—HC,B—HD,C,D], M.[A—HC,—H,C,I], (4)
Y.[A—BF,H,—F,0], X.[A—BF,H,C—DF,I], (5
Y.[A—HC,H,—F,0], X.[A—HC,B—HD,F,I]. (6)

F and H are numerical matrices which are chosen such that matrix A— BF and matrix A— HC are sta-
ble. Please note that transfer matrices M and M are biproper, and so are M~'and M~!.
It is well known that the set of internally stabilizing controllers is

K=—¥—M)X—N)O™* (7
ot K=—(X—QN) " (Y—@i)~.
Where @ is any rational proper and stable transfer matrix. By properly choosing @, we can make the
stabilizing controller K also a decoupling one. However, this route will lead to a two-sided model
matching problem, requiring both left and right inversion of matrix; thetefore we will leave this line
of approach and proceed in the following to determine separately the factors (¥ —MQ) and (X—NQ)
of K in (7). 1t will turn out at a later stage that this appoach needs only a right inversion of a numeri-

cal matrix and the explicit computation of N,X,X,Y and Y are actually not required.

I —Q7! ’
Premultiplying the left side of (2) by |:0 7 :l and premultiplying the right hand side of (2)

A R A A
GfEeh = ¥ s

[M Y—MQ:I”Z[X——QN —(7—@]17)} o,
N X—N@ —N M
Denoting U=Y—MQ, V=X—N@, V=X—qQN, U=Y—qM, €))
(8)can be written as
v U M U :
[_N P MN V}=1. (10)
and the set of stabilizing controllers of (7) can be expressed as
K=-—Uv"! (11
where U and V are proper and stable transfer matrices.
Form (10) we find that —NU-+MV =1 or
(I+PK)~'=VM. (12)
By making use of (12),the closed-loop transfer matrix can be written as
G.=PK(I+PK) '=I—(I+PK) '=1—VM (13)
ot G,=PK(I+PK) '=—NM"'UV"'(I+PK)"'=—NM"'UM. ' (14)
(13)gives the relation between ¥ and G, as follows;
V=—G)M". (15)

% For stable P, we have; F=H=0, N=N=P, M=M=1I, X=X=1, Y=7=0.
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To determine the relation between U and G., let us denote N~! as the right inverse of N,i. e.
NN-!=]J, and write G.=NN~!G,, we find from(14)that N(N 'G.+M~'UM)=0. Since N is of
full row rank and U is to be determined, we can select the solution N™!'G,+M~'UM =0. This gives
the following relation between U and G,

U=—MN"'G,M". (16)
(15)and (16)are the basic equations for determining the constraints on G..

Let us denote the assigned diagonal closed-loop transfer matrix by

Gc=diag{£l---& : Qan

(23] (273

the constraints on £ and o; are determined such that 7 ad U are stable and proper transfer matrices as
required by the stabilizing controller.
1 We find from (15) that

V=(I—Gc)ﬂ”:diag{aj_ﬁl}./W‘l. 18)
J
Fot V to be stable, the right half plane (rhp) poles in the jth row elements of M ! must be canceled by
the rhp zeros of (¢;— B,). Thus, (a;— B,;) must have as its zero polynomial the least common multipli-
et (Iem) of the rhp pole polynomials in the jth row of M~!.

The propetness of V. is obvious, since both diag{(a;— 8,)/a;} and M 'are biproper.

2) It is seen from (16) that

M. (19

= —MN‘IGJ'IZ‘IZ—MN‘ldiag{ﬁl----&

o o

For U to be stable, the rhp poles in the jth column elements of N~! must be canceled by the rhp zeros

of B;. Thus, B;should have as its zero polynomial the lecm of the rhp pole polynomials in the jth col-
umn elements of N~1.

Because both M and M in (19) are bioproper as we mentioned earlier, for U to be proper, the
pole-zero excess of the jth diagonal element in G. must be greater than the zero-poles excess in the jth
column elements in N~!. Specifically, let N~ !'= {n;;/d;;} and A;zm?x {deg (n,;)—deg(d;;)}, then it
is necessary that

deg (a@;) =deg(B8;) + 4,. 20)

One might suspect that the cancellation of the rhp poles in the jth column elements of N~!is not
sufficient to assure the stability of U because of the existence of M~'in (19) which might be unstable.
However, we will show by contradiction that this suspicion is unnecessary. For this purpose, let us
consider the relation — NU~+ MV =1 obtained from (10) and write it as V= M~ '(I4+NU). Now,as-
sume that U in (19) have rhp poles, these rhp poles must come from M~', because the rhp poles in
N~! have been canceled by B;. Note that rhp poles of M~! can not be canceled by N since M~ and N
are coprime. As a result, these rhp poles will appear in NU in the above expression for V, thus making
V unstable. However, the stability of V' has been assured by the cancellation of the rhp poles in the jth
row elements of M ' by the rhp zeros of (a;— f;). We thus see that this assumption of the instability

of U causes a contradiction.
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3 The Inversion of N : [A—BF,B,C—DF,D]
The key problem in our approach is the determination of the right inverse N1 of the nonsquare p

xm (p<<m) mattix N [A—BF,B,C—DF,D] defined in (3). This inversion can be carried out by

making use of the existing software package for time domain analysis. By referring to [4],[5]and
[6] , we give a discussion on this problem by considering various cases of dimension and rank.
Case a  If p<<m and rank D=p,i. e. D is of full row rank, then the right inverse of NV is
N '.[A—BD"'C,BD"',F—D'C, D™'] @n
or in the transfer matrix form
N '(s)=(F—D"'C)(sI—A+BD~'C)~'BD'+D ' (22)
where D! is the right inverse of D such that DD~ '=1. We will show in the following that
N(s)N~'(s)=I,
N(s)N '(s)=[(C—DF)(sI—A+BF) 'B+D][ (F—D7'C) (sI—A+BD~'C) " 'BD'4-D7!]
=]+ (DF—C)(sI—A+BD~'C)"'BD™ '+ (C—DF) (s —A+BF)™*
« (BF—BD~'C) (sl —A+BD'C)"'BD~'+ (C—DF)(sI—A-+BF)"'BD™".
If we write the last term of the above equation as
(C—DF)(sI—A+BF) 'BD™!
= (C—DF)(sI—A+BF)~'(sI—A+BD~'C) (sl —A+BD~'C) 'BD™".
then
N(HN'(s)=I~+ (DF—C) (sI—A-+BD'C)~'BD~ '+ (C—DF) (s —A+BD~'C)"'BD~'=I.
When p=m and rank D=1p, D is square and invertible, then D~'is the inverse of D in ordinary sense.
When p<<m , we can find D™! by employing the singular value decomposition of D,
p=o[z 0], : (23)
where ¥ =diang(o,,"+,0,) and oy, -+ 0, are singular values of D. Square matrices & and I are re-
spectively the left and right singular matrix of D. Both of them are unitary, i.e. P"O=0P" =1 and
I"I'=TIT"=] . Since I is unitary, we have from (23) that
pr=[_ox 0J. . 24)
If we denote I'=[I, I, where I'| is of dimension m X p and I% is of dimension m X (m—p),
(24) can be written as
DL, T =1, ' (25)
DI',=0. . (26)
Postmultiplying both sides of (26) by an arbitrary (m—p) X p matrix Z and summing up the product
with (25) yield
D(NXZ o™+ 1,7) =1. 27
We thus find the right inverse D! as D '=I 2@+ I, Z. (28)
The set of poles of N~!(s) consists of two parts. the first part are zeros of N(s) which are fixed; the
remaining part depends on Z. When N (s) has no rhp zero, N~ '(s) can be made stable by properly
choosing Z.
Case b If p<{m and rank D=¢<p, i.e. D is not of full row rank, we can find a pXp full

rank matrix T such that
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D, | =
TD:[ :| (29)
0,

where the ¢ X'm matrix D, is of full row rank, i.e. rank D,=¢(¢<p), and the zero matrix 0,_, is of

dimension (p—g) Xm. This procedure can be catried out also by employing the singular value decom-

position* of D
X 0
qu{ 4 O}I’T (30)

where X =diag(oy,+*+0,),01,*,0, are singular values of D. Both matrix @ and matrix I" are uni-
tary. Noting that #*@=1I and decomposing

where the dimensions of I'y and I, are respectively m X g and m X (m—q). We have

2IT
@TD=[ } (32)
5 07*41
from(30). Comparing (32) with (29) we find that
T=a", (33
D,=XIT. 34

Note that the product X'TT is of full row rank since both the g X ¢ matrix X and the ¢ X m matrix
IT are of full row rank.

Let the state equation and the output equation of N;[A—BF,B,C—DF,D] be £(t)=(A—BF)
* §(W)+Bn(t) and §(t) = (C—DF)&(t) 4Dy () respectively. Premultiplying both sides of the output

equation with the unitary matrix T yields

TE@) =T(C—DFYE)+TDn(t). (35)
z, () C,
Denoting Tg(t)=[ :I, T(C—DF)= [ :| (36)
Zp—q (1) P—q
z, (2) C, D, 3
(35)can be written as ]: }=[ i|§(t)+[ }n(t). 37
Zﬂ_q(t) Cp_q Op_q
Replacing z,—,()in (37) by z,_,(t) results in
[ O }—[ Cq } <t>+[ & ] @ (38)
2.4 Lo, (4—BR) ¢ c,.pJ"
D,
If rankl: ]=p (39
Cq Dq
we define ) NI;[(A—BF),B,[ :|,[ }jl (40>
¢,_.ca—Bm) 1" Le, B

and find the right inverse Ni! for N, using the method mentioned in Case a.
In order to make use of (22) for Ni!, N;in(40) is written as
N,:[A—BF,B,C;—D\F,D,]
where Cl:[C.,—i—D,,F]’ Dlz[ D, }
C,_ A C,—,B
To find the relation between N~!and Ni!, we first investigate the relation between N and N, as

#* If D=0, a null matrix, then X=0, ¢=1, I'=1,
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o

foliows. Form(40) we have the transfer matrix

Nl(s)z[ ) ](sI—A+BF)*lB+|: D } (41)
C,—,(A—BF) C,—,B
Taking Laplace transform on both sides of (38) yields

I, 0 z,(s) C, D,

[o sl,_j [z,,_q(s) :| o |:C,_q(A—BF) }é(s) [0,_43}7(8)' <

Since £(s) = (sI—A+BF)~!'By(s), we find from(42)
) e, D,
[ j|T§(s)= {[ }(SI—A‘l—BF)_IB—F }n(s)=N1(s)n(8) (43)
0 sl,, C,—,(A—BF) - C,_,B _
by (41). Recalling that £(s)=N(s)7(s), we find from (43) that
I, 0 .
[ }TN(S)=N1(3). (44)
0 sl,—,
Noticing the following manipulations starting from (44)

AT A i
|: ]TN(s)er(s):I, N(S)NTI(S)IT‘I[ } 5
0 s, ) 0 sl,—,

1
N(S)NT‘(S)]:(; :|TiI=N(s)N_1(s)

Slyp—g

I, 0
we have N_](s)=N1_1(s)[O :IT. (45)

sl,—

If the rank condition in (39) is not satisfied, iteratior: iqs required. The algorithm goes back to
(29) and restarts with N replaced by N,. The iteration stops when a new N; with a D-term of full row
rank is found.

The strategy of this technique is as follows. When N (s) does not have a D-term with the row
rank equal to p, we first rearrange the rows of N(s) so that the upper part of N (s) will have a D-term
of full row rank. Then, we multiply each row in the lower part of N (s) by a factor s to raise the or-
der of the numerator polynomials in the lower part elements of N(s). If a full row rank D-term is as-
sociated with the lower part of N(s), the combination of the upper part and the new lower part will
Ir'esult in a matrix N, (s) which has a D-term with a row rank equal to p. This N,(s) is inverted and its
right inverse Ni!(s) is substituted into (45) for obtaining the transfer matrix N~!(s) required-by
(19).

4  The Computation of Controller
If the constraints on B: and «; are satisfied by the assigned diagonal closed-loop transfer matrix

diag{f:/a;} , a proper controlletr K can be determined from (11). By (18) and (19), it follows that

K=—UV"=MN’1diag{ﬁi/a.—ﬁi}. (46)
Example
0 1 0 == 0 1
1 0 1 0 0 0
P;I:A,B,C,D:|= 0 0 1 » 2 1 _]. ’[ }5[ ] ’
0 1 1 0 0 O
=2 —1 —1 1
£} Sod 1 [—232+8 —s?+2s+3 282+28—4:]
P T EFDGF2 — 1) 24 35+-2 2542 0

with poles; —1,—2,1. Let
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4 6 2 0 0
F=|—4 —6 —2(, H=[0 0
-4 6 2 4 3
0 1 0 0 I 0
then A—BFF=| 0 0 1 |, A—HC=| 0 0 I
—2! —§ —4 =2 =g =

have eignenvalues {(—1 —1 —2} and {—0.1007+0. 4661 —0.1007—0.466i —8.7985}

respectively.

0 1 0 0 0
_ ’ — 10 o —18 6
M.[A,—H,—C,J]=<1|0 0 1 |,| 0 0 |, , ;
04 = =] raty dreiligued]
2 1 —2] L—4 -3
ny 1 s*4-6s'—s+42 3?43
M1(s)=-
(+D+2)G—DL  4s(s+1) (s+1) (24 4s—2)

As M~'(s) has a rhp pole polynomial (s—1) in each row, (a;— ) must have (s—1) as its zero

polynomial.
0o 1 0 -1 0 1
N.[A—BF,B,C—DF,D] 0 0 1 2% 1 1 ['IOI][OOO:I
H b ’ b S b ] [} I 1’ 0 0 0 ,
—2 —5 —4] -1 1 1
i L 1 [—282—108—2 —st—A4s+1 2.‘32—{—584—4}
= i Festzl 252 952 0o J
Since rank D=¢q=0, T=1;%x:, D,=C,=0, C,_,=0C,
N,:[A—BF,B,C(A—BF),CB]
TO 1 0 Sl 0
s rt—=i4 ol AT uifies 2 55 g2
=<1 0 0 1,2 1 —1], y )
—2 —=5u—3 1 0 0
—2 —5 —4] [—1 1 1
NS 1 [—283—]082—28 —s*—4s’ s 283+682+48:|
T4 s t2l #_g9s — 258 —2s 0 )

Because tank CB=2, N1 !can be found by the method mentioned in Case a. We first find the singular
value devomposition

cB=o[x 0[N IJ°

0.7071  —0.7071 0 3
—0.9732 —0.22987[3.0777 0
= , 0.3162 —0.3162 —0.8944
0.2298 —0.9732 0 0.7265 0
—0.6253 —0.6253 —0. 447

then compute the right inverse of CB and the right inverse of N;(s):

0 1
(CBY'=NZ" &+ TZ= {—0. 2 —0. 4:l (z=0),

0.4 0.8
Ni'.[A—B(CB)~'CA,B(CB)~',— (CB)~'CA+F,(CB)™'],
—0.45s—0. 4 s24+4. 8s+4.6.
. ’ 1 :
Nll(S):—_—m _0. 282+,9’ 28+0.4 _0- 482_4. 48_5- 2}.
0. 4s*+0. 4s 0. 8s*44. 45s+3. 6

By using (45), we find
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—0. 45—0. 4 s'+4, 8s5+4. 6
N-1(s) =sNi'(s) = ——— | —0.2524-0.254-0. 4 —0.45'—4. 45—5.2].
s+0.6

0. 4s2+40. 4s 0. 854, 45-+3. 6

Since there is no thp pole in N=!(s), we let

B (s)=b, ﬁz(s) =b,
and choose a(s)=0+1)(+0.5), a(s)=(s+2)(s+0.5).

Since both @ — £ and @, — B, should have a root at s=1, we find b,=3, b,=4. 5, We thus have as-

signed the closed-loop transfer matrix
3

| GTDGT0® 0
‘ ; 4.5 ’
(s+2)(s+0.5)
oty il e n
(s—1)(s+2.5)
G.(I—G)'=
4.5

0 (s—1)(s+3.5)

The controller K (s) is computed in the following .

s—5 —4 0
J N
M.[A—BF,B,—F,I], M(s)—m 6 s+5 0
—6 —4 s+1
[ 0.4 8D s?4+0.45s—2.2 7
‘P s40.6 s+0.6
B R N T e 5 R W R D )|
ME)N'(s)=|—0.2 p 0'4___—_s+0.6 A
(s+2)(s41) (s4+2)(s—2)
| B A= 8 it =T e
K& =M(s)N'(s)G.U—G)!
P s+1 4.5 S0, 4s—2. 2 N
" 0. 8) (s— 1) (s+2. 5) "2 (sF0.6)(s—1)(s+8.5)
—|—0.6 (s4+2)(s41) 1.8 (s+2)(s—2)

" (540.6)(s—1)(s+2. b)

1.2 (s+2)(s+1)
L " (s40.6)(s—1)(542. 5)

"7 (s40.6)(s—1)(s+3.5)

3 6 (54-2)(s—2)
" (540, 6)(s—1)(s+3.5)

S  Conclusions

We have determined the constraints on the assigned diagonal closed-loop transfer matrix of a uni-
ty feedback system with a non-square, rational and proper plant, in otder to have a rational and prop-
er controller which internally stabilizes and decouples the system. Doubly coprime factorization is em-
ployed to provide the basis for the determination of the constraints. This paper also puts forward the
computation formulas for the controller, when the constraints on the assigned diagonal transfer matrix
are satisfied. The central problem of this computation is the determination of the right inverse of a
non-square numerical matrix by employing singular value decomposition. In all the computations,
State space models are invariably used; frequency domain models are employed only for analysis. This
makes it possible to employ the existing algorithms for time domain analysis, thus providing a conve-

nient way for the practical application of the results obtained.
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