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Abstract: An adaptive feedforward control algorithm for bilinear systems with measurable
and bounded disturbances and the proof of its stability are given in this paper. It can eliminate the
effect of measurable disturbances and ensures that the system variables are bounded and the gener-
alized tracking error is small, even for some nonminimum phase systems. Simulation studies show
that the algorithm is well suited for the pH neutralization control, and can give superior control
performance compared with other adaptive control algorithms.
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1 Introduction

Bilinear systems arise quite naturally from basic principles in engineering, biology,
Chemistry, etct!, and a general nonlinear plant may be approximated by a bilinear system
more accurately than by a linear one. For these reasons, the study of bilinear systems has a
great attraction. Some contributions have been made on the adaptive control of bilinear sys-
tems, such as [2~6].

Adaptive control of bilinear systems with measurable disturbances is very important in
both theory and practice, but it is still open. In the presence of measurable disturbances, the
adaptive control performance without considering the effects of the disturbances will not be
satisfactory; especially in the case of pH neutralization process, in which the flow rate of the
acid is varied, the controller will virtually be useless. For the control of pH process, some
self —tuning control laws are described in [7,8].

2  Adaptive Control Algorithm

Consider a discrete time bilinear systems descirbed by

A(g Dy @) = ¢ *Blg Hu) + ¢ Clg7Hy@®ult) + g ‘D@ HV @) + 0@ + f. (D
where y(), u(¢), V() and w(£) denote the output, input, bounded measurable disturbance
and the bounded disturbance, respectively. fis the steady state parameter, and d is known

time delay.

", ™y
Alg) =14 Dag™s B@hH =2bg™ & 70
i=1 =0
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7 iCs
Clg™ =14 Dleg™; D@ = Dldg.
i=1 i=0
The following assumptions are made about the system (1)
A1) The upper bounds for n,, n,, n, and n, are known.
A2) C(g™") is a stable polynomial.
The controller is to be chosen to minimize the following cost function
J=[P@@Dyt+d)—R@ Dy ¢+d)+ AQUE D@ u)]? (2)
where R(g™') is a weighting polynomial in ¢=!, P(g~!) and Q(g™!) are weighting stable
polynomials in ¢* and P(0) = 1, Q(0) = 1. y" (¢) is set point. Ais a positive weighting
constant and 8(¢) will be defined later.
Introduce the following ploynomial identigy
P(@™) = F(@g™OHA@™") + ¢7¢Glqg™") ’ (3)
where F(g™') and G(¢7!) are polynomials with order d — 1 and ng, respectively, and n, =
max{n, — d,n, — 1}. Multiplying (1) by F(¢™!) and substituting (3) into (1) gives
Pl@ ™Dyt +d) =G )y@) + F(@ DB Dut) + F(@HC@ Hy@u)
+F@ D@ HOV® + 0t +d) +F=0®) 0+ oG +d) (1)

where
F=FQf,
ot +d) =t +d) + fiwt+d— 1)+ - + f,_ 0@+ 1,
T = [y(@) e, 3t — 1) u(@) sy u@ — ny —d + 1), y(Du®), -,
Y& —n —d+ Dut —n.—d+1), V), ,V( —n,—d+1),1],
0" = [y, sQugs Boseey nytd—1 WARELE 97n‘+d—1 yPos s +a—1 AP ’
It is clear that w(#) is still a bounded disturbance. Assuming its upper bound is M, i. .
lo(®) | <M, ¥t>=o0.
Substituting (4) into (2), we have
J < 2[9p@)'0 — R(g Dy* ¢t +d) + AQUTHE@u ) )* + 2M?,
Thus the optimal control law that minimize (2) is given by ; ‘
@0 — R(g Iy ¢t +d) + QU@ HE@u) = 0. (5
It is easy to see that u(z) is soluble if and only if B, + 7,y() + A8() % 0. In order to
guarantee % (¢) soluble and bounded, &(¢) is chosen as
50 :{ 1, if B +7%y@ =0,

o
—1, if B, +7,y@) <0 B

and a(t i) e — 6(t)9 = 192""-

The adaptive control algorithm is obtained by using a recursive least squares estimator
with a dead zone

= o a(t)P (@t — 2D)plt — d) NN
0ty =8¢ — 1) + T ot — PG = Dptt = 35D @)
e(t) = P(g Dy@) — ¢t — )0 — 1), (8)

. B oy aPE — 2ot — d)p(t — d)TP(t — 2)
PG—D=Pt—-2 1+ ¢t — PG — Dot — d)

y €))
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, if le@®)| = 2M,
A= {” el = 10)
0, if le®)| <<2M
where0</l<%.

e(t)™0(t) — R(g™ Dy ¢+ d) + Qg HE@Wut) = 0, an

56 z{ s 1.f B, ) + Vf(t)y(t) =0, s
—1, if B.@ +7.@y@ <O
3 Analysis of Adaptive Control Algorithm
Define
9¢) =6 — 8@y,
) =0¢—1)—0¢t—a, 13
D) = P(gDy(t) — R(@Hy* @) + 1Q(g )G — dult — D). a4
Lemma 1 The parameter estimation (7)~(10) has the following properties:
ol i e f-;)(f;’((a:{iz—)so(t i S
1) }1}2 | e | =o. (16)
Proof From (4) and (8) yields
e(t) = ot — d)T0(t — 1) + w@). an
Multiplying (9) by Pz — 2) ' from the right gives _
PG PG — = = T = EREE 2P g Dt =) (18)

T 1+ et — PG — et —d)
Using (7), (17) and (18), we have

— _ oN—1Tr — 1) — _a@P@ — 2)¢lt — dw(t)
() = Pt — DP@ — 2) '8¢ — D oG- DPG D= D 19)

Now, we define
V@) =8P — 1T, (20)
Thus using the similar argument adopted by Gu and Wang!?, the conclusion (1) and (I)
can be proved. The details are given in the Appendix A.
Lemma 2 Let the assumption A1) and A2) hold for the system (1). Further, asuming
that a positive constant K, and 0 << K; < oo,

|P(g Dyt +d) — Ky@®| <K, Oglggidl@(r)l + K ly@®| + Ky [@2D)
if the control algorithm (7)~(12) is applied to the system (1), then
Tu@ | + ly@ 1 + ly@u@® ] K, + Kzogggidlé(r)l. (22)

Proof Using the similar methods in [10],we can obtain (22). Because of the limitation
of pages. the details are omitted here.

Since K, may be large constant, the assumption (21) is not a strict constraint on the sys-
tem output; and the condition can be hold for first order bilinear system!®l,

Lemma 3 Lets, (2), 5,() and s;(¢) be non-negative real scalar sequence and lims, () =

0, if

t—>o0

5, () < K, + K; max [s,(7) + s, (T)s, ()], 23

o+ d
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—

where K, > 0,K; > 0,then there exist constant K,,K,, Such that
55@) <K+ K, max |s,CT) 1. (24)

[ L]

Proof See the Reference of Tsiligiannis and Svoronos™',
Theorem 1 Under the conditions of Lemma 2, the control algorithm applied to system
(1) leads to
I ) The closed loop system BIBO stable.
I ) There exists time T < oo such that
[P(@DyG +d) —R@ Dy ¢ +d) + Qg DEDu@)| <2M, V t=T
Proof From (8), (11) and (14), we have

D) =e@) + ¢t — B¢ — 1) — 6 — d)). (25)
Using (22) and the definition of ¢(¢) gives
| oz —d) | <K8+Keon<laélg(f)|, (26>

where 0 << K < oo,
Then from (13), (25) and (26) it follows that
ot — & | <K, + Kymax(le@| + e | + | oc = .
Now using (16) and Lemma 3, we obtain
|t —d) | <K,+ K mzraxle(r)l Q7

where 0 <X Ky < oo, e

From (27) we know that Theorem 1- I ) is true if () is bounded.

Defining H, = {t:|le(®)| = 2M, t = 0}.

If H,is a finite set, then e(¢) must be bounded. Suppose H, is an infinite set, we take

any subsequence {t,:|e(z,)| = max |e(z) |,k = 1,2,++,00} from H,.

\r\t‘

Along the subsequence {z,}, from (27) it follows that for sufficiently large K

a(t)%e(ty)
(1 + ¢t — )Pt — 29t, — d) |1
la" |€(t )|
[1 + Km(P(~ D) | e — ) || 21
1/2 |e(t ) I
[1 iy P (2 (= 1))(K + K le() )21
#1/2

= 1 >0
[ T A (P(= DK, + Ko/2M)*]”
where A, (P(— 1)) denotes the maximum eigenvalue of matrix P(— 1). But this contradicts
(15) of Lemma 1, and hence the assumption that H, is an infinite set is false and e(z) is
bounded, thus from (27) the boundedness of ¢(¢) follow, i.e. the conclusion 1) of
Theorem 1 is true.
From the definition of a(¢) in (10), there exist 7 > 0 such that a(2) =0, VY ¢t =T,
since H, is a finite set. Now from (75 yields for t > T
8¢t) = 8t — 1) =6, (constant vector)
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and using (25) and the definition on H, , we have
16| < le@)| + gt —d) || - 10— —b0¢—-ad | <2M, Yt=T
which completes the proof.

4 Simulation of pH Control
A typical pH neutralization process described by Buchholt and Kummel*!,Goodwin and

Sin™ is as follows:
ye+T)=1[1— %F(t)]?(t) = %H(t) == %y(t)ﬁ(t) + aVTF(t) + w4+ T) (28)

where V is volume of stirred tank, F(¢) is flow rate of strong acid, a is concentration of
strong acid, #(¢) is flow rate of the base, b is concentration of the base. w(z + T') represents
the combined effect of measurement, actuator, and modelling error, T is sampling period.
5(t) = [H*] — [OH" Jis the distance from neutrality, it can be determined by
¥ =107 — 10/“K,, (29

where p(2) is the pH value, K, &~ 107" is water equilibrium constant.

The following parameter values are adopted for simulations:

FGt) =01~0.251/min, «(@) =0~ 0.21/min
a=10"%mol/l, b6@&) =10 °*mol/l, V=21, T =1 min.

The control model in pH is taken in following simulations, pH value y(2) is obtained from
(29). The control model in y(z) as in Goodwin and Sin'® may be difficult to implement in
practical engineering, because very small disturbances such as meaurement errors,
computation residuals have a great effect on the value of y().

In simulations , @(t) and #(0) are chosen as follows ;

1) The proposed bilinear adaptive feedforward control algorithm

o) = [u@) ,y(Dut) ,y@&) ,y OV @),V @®),1], 6" = [1,0,0,0,0,0].

2) Bilinear adaptive control algorithm of [6]

) P = [u(®),y@u@,y@®),1], " = [1,0,0,0].

3) First order linear feedforward control algorithm employing a least squares estimator

()" = [u() ,y(®),y®OV @),V (£),1], 60" = [19.3,0.09,0,0,4.2].

4) Second order linear adaptive feedforward control algorithm employing a least squares

estimator
e)T= [u(@),ult — 1),y@),y(t — 1), y@®OV@®,V@),1],
§(0>"=[1,0,0,0,0,0,0].

The set value of pH is 7. In order to compare the proposed the algorithm with other al-
gorithms, let the acid flow F () change from 0.1 to 0.125 1/min, i.e.
0.1 1/min, if <50,
0.1251/min, if ¢ = 50.

The pH responses of above algorithms are shown in Figure 1 and 2, respectively.

F@) = {

If the acid flow F(¢) is varied in a slow sine wave, i.e.
0.1125 1/min, if ¢ <50,
F@) = {

0.1125 + O. OlZSsint;—g)l/min. if &> 50.
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Fig. 1 Output of proposed bilinear adaptive

feedforward control algorithm
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Fig. 3 Output of the proposed bilinear adaptive

feedforward control algorithm

10pH

t/min

| Ele ot = | Y
180 240
Fig. 5 Output of first order linear adaptive

LI
120

feedforward control algorithm

Fig. 2 Output of bilinear adaptive

control algorithm

t/min

0 60

180 240
Fig.4 Output of bilinear adaptive

control algorithm

0 L
S
t/min
- TS F B | i
0 60 120 180 240
Fig. 6 Output of second order linear adaptive

feedforward control algorithm

Then the pH responses are demonstrated in Fig. 3~Fig. 6.

From Fig. 1~Fig. 6, it is clear that the proposed control algorithm gives far superior control

to either bilinear adaptive control or linear adaptive feedforwrd control algorithms. Especial-

ly in the case of varying acid flow rate, the other adaptive control algorithms have bad per-

formances, whereas the bilinear adaptive feedforward control algorithm works very well.
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Appendix A
For simplicity we define
L) = ¢t — d)'P@ — )t — d).
Using (18), (19) and (20) we can get
_a(e(t — D¢ — Dg — T8¢ — 1) + 20(t) ]

Vo) —Ve—D =

14+ L)
2 ) T L S -1 a i 2
T a®)*elt —d)'P(t 2)(11’(:;_ JL(lr)))zP(t Dl — d)w@) . (A1)
Multipling (18) by P(¢ — 2)PG — 1)~ from the left and by P(t — 2)¢(t — d) from the right we obtain
PGt — PG — 1P — e —d) _ Pl — Doplt — d) (A2)
1+ L&) Tl —a@le)y
From (17), (A1) and (A2) it follwos that
a)e®)? a@yw(e)?

Vo) —Ve—-D=—7773 "1+ d - au)L®

3au)[1 + Q- %E(t))L(t):le(t)z -(x)(‘f(” aw}

~TAT LA T A =a@Lle 1+ - aw)L®’ Coh
Thus from (10) and (A3) yields
V) —Ve—-—1D<0
and noting that V (¢) is a nonnegative, nonincreasing sequence, it converges, from (A3) gives
o alt) [1 oA (IN== —a(t))L(::)]e(t‘)2
< (1+ Lend+ = a(t))L(t))
Using the propetties of convergence series, we have
a(t)[l + Q- —a(t))L(t)]e(l)z
A [N R O A I
Let us take 1" € (/4,%) , then
14+ (1- ',—iam)f,m LW +1— 4 .
It 100} A R V7 E o S Ll
It follows that
lim a()e(t)? (AL)

e 1+ @t — )P — 2)9G — D
This establishes Lemma 1- I ).
Using (7) and noting a(¢) <1, we have
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Z(1)E g T — oXtay — rpye
18w — b — 1) | _a@ielt —d)Y'P(@ — 2) 't — d)elr)

A+ L)
AW L()e(@)P A (P(— 1)) _ a(t)e(®): Aue (P(—1))
i (1 + L@))? 1 -+ L)

and from (A4) it follows that
lim || 0@ — 8¢ — 1| =0

then
d—1
lim | 6¢) —0G¢ —d) | < D lim|0G—i)—8c—i—1)]| =o.
T i=1

This completes the proof of Lemma 1.
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