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Abstract: The problem of robust controller design for uncertain linear discrete-time systems
with H.. norm and variance constraints is considered in this paper. The goal of this problem is to
design the robust controller, which stabilizes the plant for all admissible uncertainties.such that
the closed-loop transfer function has an H., norm less than a specified scalar and such that the vari-
ances of individual states are less than specified constants, An effective ,algebraic approach is devel-
oped to achieve both H.. norm constraint and variance constraints for uncertain linear stochastic
discrete systems. A feature of this approach is that no matching condition about uncertainty is
needed.
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7 Introduction

In recent years,approaches to the synthesis of controller with mixed H,/H.. performance
criteria have been developed™~*. Although H,/H.. control is closely related to many robust-
ness problems such as sensitivity minimization, stabilization of uncertain systems and loop
transfer recorvery,it still suffers from non-robustness,a situation to that of LQG control.
This has been drawing much attention to robust H;/H., control ;see e. g. [4,5]. However,it is
quite common in stochastic control problems to have performance objectives that are natural-
ly described in terms of the acceptable variance values of the system states. Mixed H./H.. de-
signs may offer a way to minimize an H, performance criterion subject to a prespecified H..
norm constraint on the closed-loop transfer function,but they are not able to directly acco-
modate variance constraints that are imposed on individual system states.

The covariance control theory™®’* has provided a more direct methodology for achieving
the individual variance constraints than the LQG control theory. Recently,[8,9] developed
covariance control techniques subject to the H., norm constraint on the closed-loop transfer
function, [10] investigated the problem of robust covariance control for uncertain linear con-
tinuous systems. Moreover, it is significant to study the problem which deals with the H.
norm constraint and individual variance constraints for uncertain linear discrete-time sys-
tems, simultaneously. Hence, the purpose of the present paper is to develop a technique for

choosing a particular controller, which can achieve a specified H.. norm upper bound and a
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specified state variance upper bound for the uncertain systems.

In this paper,the robust variance-constrained H;/H.. control problem for a class of linear
uncertain systems is considered. The problem addressed is to design the robust controller
such that the closed-loop system simultaneously satisfies the prespecified H., norm constraint
and the prespecified individual variance constraints. An effective,algebraic, modified Riccati
eqution approach is developed to solve the above multiobjective design problem.

2 Problem Formulation and Assumptions

Consider a class of uncertain linear discrete-time stochastic systems described by the

state-space equation of the form

x(k + 1) = [A 4+ AA(o)Jx (k) + Bu(k) + Dw(k), (2. 1a)

y(k) = Cx(k). (2.1b)
where z(k) € R",u(k) € Rv,w(k) € Rw,y(k) € K" and 4,B,D,C are constant matrices
with appropriate dimensions. w(%) is a zero mean white noise process with covariance I,and
w(¢) and x(0) are uncorrelated. The notations “[ + ]>0" and “[ + ]>>0",respectively ,denote
positive definite and positive semidefinite. ¢ is the model parameter uncertainty and AA(+)
represents the system matrix uncertainty. AA(o) depends on the parameter o .

Now,we make the following assumptions which are useful in the proof of the main re-
sults.

Assumption 1  Uncertain parameter ¢ belongs to a prescribed compact subset, and
AA(0) is an unknown matrix function which is bounded as || AA(o) | << a, where || * |
means the spectral norm and « is a positive constant.

Assumption 2 The pair (4,B) is stabilizable and DD™ > 0,

Remark 1 The reason {or Assumption 1 and 2 can be found in [10] and [8],which re-
spectively dealed with robust control and covariance control problems. It should be noticed
that no matching condition about uncertainty is needed.

Let the state feedback control law be given by u(k) = Gx (k) ,then the closed-loop sys-
tem is governed by

x(k + 1) = [A + AA()Ja (k) + Dw(k), A, = A+ BG, (2. 2a)
y(k) = Cx(h), (2. 2b)

Furthermore, the closed-loop transfer function H(z) from noise input w(%) to output
y(k) may be written as H(z) = C[z] — (A, 4+ 8A(0))]'D. H the closed-loop system(2. 4)
1s asymptotically stable, then the steady-state covariance X defined as X = }i*mmE[x(k)xT(k)]
exists and satisfies the following discrete I.yapunov equation

X =[A + AA()]X[A, + DA T 4 DD, (2.3)

Now,We can formnlate the problem under stu.dy as follows.

Robust H.. control problem with variance constraints:For the uncertain system (2. 4),
determine the state-feedback gain, G , such that the following performance criteria are si-
multaneously met.

a) The closed-loop system (2. 4) is asymptotically stable,i. e. A. + AA(0) is asymptoti-
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cally stable in the face of the existence of uncertainty.
b) The H.. norm of the disturbance transfer matrix H (z) from w(k) to y(k) meets the
constraint || H(2) || « < v, where || H() || » = i ]"max[H(e”)] and 0n.[ + ] denotes the
0,2

largest singular value of [ * J;and vis a given positive constant.

¢) The individual state variance constraints are satisfied,i. e, 5 [ X i <Kofyi=1,2, 30,
where [X ]y is the ith diagonal element of X , and 6;(i = 1,2, ,n.) denotes the root-mean-
squared value constraint for the variance of system state.
3 Main Results and Proofs

In this section,we first establish the conditions for the existence of the feedback gain.’
which achieves both the robust stability constraint and the robust performance constraints.
This leads to the modification of an algebraic Riccati equation which enforces the robust He
constraints and the robust variance constraints. The following result expresses the perfor-
mance in terms of the H.. norm of the disturbance transfer matrix and upper bounds for the
actual closed-loop steady-state covariance X .

Lemma 1 Let the H. norm upper bound v and the state-feedback gain G be given. If

there exist a positive definite matrix P and a scalar parameter € > 0 such that

Q <€, 3.
P = A[Q(el — Q) 'Q + QAT + ol + DD". (3.2)
where
Q = P 4+ PCT(*I — CPC")"'CP. (3.3
Then A, + AA(0) is asymptotically stable for all admissible perturbations and
NH () ||lo < v (3.4)
and X< P. (3.5)

Proof Note that for the symmetric nonnegative matrix AA(e)AA(0)T ,we have
AA(HAAD)!T < |AA)AAW)TIT < |[AA)|PT < 1.
Define R(¢) = [AQCel — Q)% — AA(o) (el — Q)V*], then
0 <<R(@R(T
—AQel — QIQAT — AQAA(0)T — DA(IRA! + LA(o) (el — QLA
<AQel — Q@ 'QAT — [(A. + AA@NQ(A, 4+ BA()T — AQAD ] + a'el
=11
and therefore
A[Qel —Q'Q + QJA! + el = H + (A, + DAW)HQA, + DAG)T. (3.6)
From (3. 3) and (3. 6),(3. 2) can be rewritten as
P = (A + AA(@)[P + PCTGA — CPC™)™'CPJ(A, + DA(0))T + H + DD".
The asymptotically stability of the closed-loop matrix A, + AA(e) can be guaranteed since
1_1 + DD™ >0. The proof of (3.4) and (3. 5) can be easily completed in a manner similar to

that of Lemma 2.1 of [3]. This proves the lemma.

Remark 2 Lemma 1 shows that,given a state-feedback gain G for which there exists a
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positive definite solution to (3. 1) (3. 2),the robust stability constraint and the H. distur-
bance attenuation are automatically enforced. Furthermore ,the actual H, performance of the
controller is guaranteed to be no worse than the bound given by P .
By using the above lemma,we can appropriately assign P with (3. 1) and

[Pl << a! (G=1,2,"n) (3.7
where o, have been defined in (2. 9) ,then we seek the set of the state-feedback gain G which
satisfies (3. 2) for the specified P . If such a state-feedback gain exists and can be obtained,
then from Lemma 1,the following results can be guaranteed; 1) closed-loop robust stability;
2) prespecified He. disturbance attenuation v ; D [XT <[P <ot = 1,2, 1), Hence,
the problem of robust H.. control with variance constraints will be solved. To this end,the
problem considered in this paper can be converted to the following auxiliary “P-matrix as-
signment” problem.

“P_matrix assignment” problem: 1) find the conditions under which there exists a state-
feedback gain G satisfying (3. 1) (3. 2) for the specified P . In this case,the given positive def-
inite matrix P is called an assignable matrix. 2) find the set of all feedback gains that can
achieve the assignable matrix P . In what follows ,this auxiliary problem will be solved com-
pletely.

Lemma 27 Let M € R"™"and N € R"*(m < p). There exists a matrix V which simul-
taneously satisfies N = MV ,VV" = I'if and only if MM® = NNT . In this case,a general solu-

ation for V can be expressed as
I 0
o VM[O U} 1, UeRewxe—w, UUT =1 (3.8

where V and Vy come from the singular value decomposition of M and N ,respectively,

Zog s O - Zu O i
M:UM[ r ]V@: [Un Um][ e ][ f‘:\
0 0 0 0 M2

Zy O Zy 077VH
N=UN|: 0” O]V{,.—_[Um Um][ 0” ][ "‘}

04LVR,
and ry = rank(M), Uy = Uy, Zra—= 2N
Now ,we can rewrite (3.2) as follows:
A[Q(l — Q) 'Q + QAT = P — afel — DD, 3.9
Consider (3. 9),since its left-hand side is positive semidefinite, P is required to meet
P > a%l + DD". (3.10)

Hence ,we first define R = Q(el —Q)7'Q +Qand S = P — a*e] — DD" , then take the

square roots of R and S

R.= HH", 18=TT%, #.,T € R (3.1
Since (3.9) can be rearranged as follows:
(AHYAH)" =TT, (3.12)

then from Lemma 2, (3. 9) is equivalent to
BG=TVH'—-A (3.1
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where V € R ™" is some orthogonal matrix.
1t follows from [11] that (3. 13) has a solution for G if and only if there exists an or-
thogonal matrix V such that
(I — BB*)AH = (I — BBH)TV (3.14)
where B* denotes the Moore-Penrose inverse of B.
By using Lemma 2, (3. 14) means
[ — BBT)AH][d — BB")AH] = [ — BBHT][U — BBY)T]", (3.15a)
or equivalently
(I — BB*)(ARA" — S — BB*) =0 (3.15b)
which leads to the following result.
Theorem 1 A specified positive definite matrix P satisfying (3. 7) is assignable if and
only if there exists a scalar parameter € > 0 such that
Q<el, (3.16)
P > a%l + DD", (3.17
(I — BB {A[QI — Q) ~'Q + QJA" — P + a%l + DD"}(I — BB*) =0 (3.18)
where Q = P 4 PCT (A — CPC")~'CP.
Now ,we will characterize the feedback gain guaranteeing the mixed robust,H., and vari-

ance constraints, We first take the following singular value decomposition:

7 ol
M= (I—BB+)T=UM[ 0“ O} T (3.192)

Zy 07 .
N = ({ — BB*)AH = UN\V 1 O}V}V' (3.19b)

It follows Theorem 1 and [117] that,if the given positive definite matrix is assignable,
then a general solution of (3.13) is
G=BtY(TVH™'— A+ d — B" B)Z (3.20)
where Z € R™*" is arbitrary and V is any orthogonal matrix satisfying MV = N.

By using LLemma 2,the orthogonal matrix V satisfying MV = N can be expressed as
I o0 .
V= VM[O U}VN, U @ RS (3.2

where matrix U is arbitrary orthogonal.
Substituting (3. 21) into (3. 20) yields the following theorem.
Theorem 2 Suppose that the given positive definite matrix P satisfying (3. 7) is

assignable ,then the set of all state-feedback gains that assign this P is parameterized as
I o
G = B* (TVM[:O U}VI,H‘1 — A)+Z—B"BZ (32,22

where T', H are defined in (3.11), V.V are defined in (3.19) ,and Z € R™*" is arbitrary,
U € R X9 ig arbitrary orthogonal, 7y = rankM .

Finally,the following result is easily accessible.

Theorem 3 Given the desired constant ¥ and the individual state variance constraints

o?G = 1,2, ,n,) . Assume that a specified positive definite matrix P satisfying (3. 7) is

ﬁ
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assignable. Then the solution of the robust H. norm and variance-constrained design prob-
lems can be obtained from(3. 22). ,

Remark 3 In the design of practical control systems, it is required to construct an
assignable matrix P and an appropriate constant € > 0 directly from the assignability condi-
tions (3.7)(3.16)(3.17)(3.18). Note that (3.7)(3.16)(3.17) are inequalities which are
easy to test,the attention is then confined to deal with the nonlinear matrix equation (3.18)
whose type is very similar to the equation (46) of reference[ 9. Therefore sthe equation (3.
18) can be solved using the same approach adopted in Section 5 of [9] which is suitable for
relatively lower order models. Tt should be pointed out that the proof of convergence of the
mentioned algorithm has not been completed yet and is still an open question in covariance
control theory™?. For the relatively higher order model ,a possible approach to solving the
nonlinear programming problem (3. 7) (3. 16)(3.17)(3.18) is to exploit the iterative numeri-
cal search method™". Also,the influence of scalar € > 0 upon solutions to (3.18) can be re-
ferred to [131.
4 Conclustions

This paper has introduced a theory for designing robust feedback controllers such that
the uncertain closed-loop system meets the prespecified He norm and variance constraints. A
simple,effective, generalized Riccati equation approach has been developed to solve the above
problem. It is shown that the above problem can be converted to “ P _matrix assignment”
problem and this P-matrix assignment problem has been solved completely. The existence
conditions of the desired robust controllers and the set of solutions have been introduced in
Section 3 of the present paper. It is not difficult to extend the res_ults of this paper to the case

of dynamic output feedback. This result will appear in the near future.
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