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Abstract: A sliding mode controller for the DC motor position systems is presented in this pa-
per. The system exists the high nonlinearity caused by the Coulomb friction torque. The con-
troller is designed from the normal variable structure system, then the smoothness of discontinu-
ous control law is obtained by replacing the sigum function by an unit saturation function to reduce
the chatter, and then the discrete time control laws are deduced. The algorithm proposed is easily
calculated and robust. It is implemented in a DSP-based DC motor position system, and shows the
satisfactory results.
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1 Introduction

Sliding mode control is a special control strategy in which the forcing variable has an
ON-OFF shape. In the way an equivalent high gain is applied on the system. Sliding mode
control has been used in many different fields. The general application of the sliding model
control has been presented by Utkin'J, Slotine(® and Sarpturk™. Tt has also been success-
fully applied to motion control problem due to the robustness to the relevant parameter varia-
tion and the relevant nonlinaer phenomena in the mechanical load during the varying fast mo-
tion', By the design of a suitable control strategy a high quality performance can be at-
tained. '

In this paper, a control methodology to achieve accurate position tracking for the DC
servomotor caused by the Coulomb friction torque is developed. It is designed by using the
normal design method of variable structure system, then the smoothness of the discontinu-
ous control law is obtained by replacing the sigum function by an unit saturation function to
reduce the chatter, and then the discrete time control laws are deduced. At the end, the al-
gorithm proposed is implemented in real time and shown completely robustness, si}nplicty,
and easy implementation.

2 Sliding Mode Control

There are several types of friction in a servo drive system. Viscous friction, Coulomb
friction and stiction. In practice, the frictions’ behaviour appears a nonlinear exponential
function (De Carli et al. ), and this makes the system the high nonlinearity and it is difficult

to be controlled by the conventional controller.
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The description of the differential equation of the electromechanical DC servomotor sup-

plied by the current source is

do do(» B K. T,
T =@, T =— Se® + i, — (1)

where 6 and w are the angular position and angular velocity respectively; J, B and i, are the
moment of inertia, viscous coefficient, and control current, respectively. All interconnected
terms, external disturbances and parameters variations are included in the load torque T';.

We assume that the disturbance consist of two parts: one is measurable and other is un-
measurable but we know the upper boundary T,. In our case the Conlomb friction in mechan-
ical system can be estimated by the form

. T. ith é> 0,
T () = Atf (2

— T, with 6< 0.
where T, is a positive constant. So we have T, = T, + T..
The objective of the control is to design a controller to compensate the nonlinear friction
and make the output track the desired input. The system should be robust to the parameter
variation and disturbances.

For the desired input §,, the tracking error is defined as follows:

e@) = 0,) — 0@), ) = 0,() — 0 (2. (3

For sliding mode design to track 0(¢) = 0,(z) switch surface s(8,¢) should be defined. It

is generally a linear, stable differential operator acting on the error e(?) in the state space. In

our case the sliding mode motion along a straight line is selected s(#,2) = ¢ + e(®) + (),

where e(2) is defined by Eq. (3) and ¢ is a positive constant which defines the bandwidth of
the error dynamics.

A sufficient sliding condition for such stability is to select the control to satisfy:
2
V=%>O, V=s:5<0. : (4)

Under this condition, the system’s motion will be confined to the surface s = 0 after

reaching it. During sli'ding motion, s remains zero, and the following differential equation
s=cere+é=0 (5

is governing the system dynamics. The error exponentially tends to zero e(z) = e(0) +exp(—
¢t). Thus the second order system behaves like an asymptotically stable first order system
with time constant 1/¢ during the sliding mode.
3 Control Algorithms

From Eq. (5) we can obtain the dynamics of s as

SZ%j:C‘é-Fé:%—@—l—c-é:?w(t)—?ia—l—%—kﬁd—l—c-é. 6

when T', = 0, for the system with Conlomb friction 7 sonly, and let s = 0. Solvei, = i,, that

is the control 7, that satisfies the condition ds/d¢ = 0, becomes

=T o bt h, 5
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The value of 7, is effectively the equivalent control, which maintains the state varibale on the
switching surface. When the system has the unmeasurable disturbance with the upper

boundary T';, the discontinuous control that satisfies the stability condition (4) is given as

i, =i, + K »sgn(s), (8)
the dynamics of s becomes
T, - i
e K <sgn(s), with K > g’ 9
in which sgn(s) =— 1for s < 0, and sgn(s) = 1 for s > 0.

By taking into account Eq. (1), the expression (8) can be presented in the form
= (GO Bt e et TH K - sgnco. 10

4  Smoothness of the Discontinuous Control Laws

Control laws which satisfy the sliding condition (6) are discontinuous across the surface

s(t), which can be rewritten as
_ i +K=i", s>0,
l“_{ic—K=z‘—, s < 0.

Under this control law, when the error state variable e(z) crosses the switching line (5)
and enters the region s <C 0, the control value #,(¢) is immediately altered from i* to 7, this
causes the state trajectory re-crosses the switching line and enters the region s > 0. In this
way , the state e(¢) is constrained to remain on the switching line s = 0 by the control which
oscillates between the value ¢ and i ~. This leads to control chattering. In general, chatter-
ing is undesirable in practice, to reduce this unwanted control chattering, Slotine and Sast-
ng'! proposed a “boundary layer” approach which approximates the ideal relay characteristics
used by linear saturated amplifier characteristics.

Suppose the objective of control is to make |e| = |6, — 0| < e, a thin boundary layer of
s can be selected by |s| <ec. In this way, when [s| is within the boundary layer, the control
law Z,is chosen by the unit saturation type control function; when |s| > ec, the control law ¢,

is the same as before. The control law 7, now becomes

ey iey sl U . Mg
=g (FF+ltc et 5D +K sat(D), (an
where the function sat is defined by
5
Sat(g—)z e Is| <ec,
1, |s| > ec.

and the dynamics of equation (6) takes the form of § + ESC— = 0.

O Discrete-Time Sliding Mode Control Laws

In order to calculate the discrete control law, the discrete time model of the DC motor
should be estimated first. Standard linear parameter estimation methods may be applied the
Eq. (1) where signals are sampled and filtered. The filter can be optimised based on knowl-

edge of the noise and the known parameters. All estimation algorithms can be characterised
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by the error model e(2) = y() — d"(t) - 0, where the vector y(¢) and the regression vector
@ are functions of the data and 6 is the vector of the unknown parameters. A recursive least-
squares algorithm is then given by the normal estimation method. More details of these tech-
niques can be found in Isermann’® and Landau'™.

An alternative is to derive a zero-order hold model for the motor representation. In our
case the ARMAX model is used. The model for the parameter identification is valid in the
linear domain. The transfer function of actuator in z-domain is then obtained by

. bz! 4 bz™!
GLEAS QA—2zH+az) 1+@— Dz —az™

The discrete-time position control system can be then represented by the following form
y4+ 1) =Q—a) vk +a-yk—1) +0b-ilk). (13

In a similar manner, the sliding surface is defined for the tracking control problem, in the er-

12>

ror space as
stk+ 1) =ek+ 1)+ Aeelk) (14
and e(B) = r(k) — y(k), A=e ',

The sliding condition given by Eq. (4) must be modified. A corresponding version for
the discrete system is needed. Let us define first a discrete Lyapunov function for this pur-
pose

Vk) = s* (k) (15)
and then use AV = sk + 1) — s2(k) <0 16>
to represent the discrete sliding condition. According to Sarpturk et al. [ Eq. (14) can be
decomposed into two inequalities as follows:

[s(k + 1) — s(k)] » sgn[s(A)] < 0, (16a)
[sCk 4 1) + s(k)] » sgn[s(k)] = 0. (16b)
Egs. (16a) and (16b) are a sliding condition and a convergence condition, respectively. If
discrete dynamics of s is chosen as
sth+ 1) = p - s(k), an
where p = ¢~ ™*and T is the sampling time, which satisfies Eq. (16). Eq. (17) corresponds
to the continuous a dynamics given by (11) for the discrete case. Using Egs. (13),(14) and
(17), we have
s+ 1) =eCk + 1)+ Ae) =rk 4+ 1) — yk + 1) + Ay(&)
=7+ 1D —[A—a)y® +aytk — 1) + bk ]+ k) — Ayk). (18)
the discrete control laws, which is to be applied at the instant %, to make s(& 4 1) equal to

zero, can now be obtained as
1,(k)= %[(d — 1=y +rk+ 1) FAcr(k) —a-ylk— D]+ %

+ K - sat(ps), 19
where 0 < p = e~ "/~ < 1.
From the Eqs. (14) and (17), the dynamics of the sliding surface in discrete time are then
governed by the following equation; e(k - 1) — (A4 ple(k) + Aspee(k—1) = 0. Now the
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dynamic behaviour depends on the sliding equation only. If we define, t;,=— (A4 %), and t,
= A« p. From the stable condition of the Jury’s test, the stable values can be obtained in the
ranges of

- 1 < tz < 1 14
. . t1=_1.8 /\=0.85,
8ty >—1—1¢,, with the selection;
t, = 0. 8075 P = 0.75.
t, <14+t
© Experimental Results L
The block diagram of the system and the a .
. £l e ia - Kt 1@
experiment system is shown in Fig. 1 and Fig. 2. = SMC ot s+ B |1
It is based on a IBM PC 386 equipped with a J

DSP-32C board. The actuator is a DC servomo-

. b Fig. 1 Block diagram of the control system
tor current supplied by PWM power amplifier.

The slidig mode control strategy has been pro-

grammed in the assembly language of the

DSP32C. All the variables used in the control 5ra] | LG Computer
system are D/A converted, scaled, and ampli- '\ Di‘:_&f_i_-_-_-_- e
fied to produce the current command of te servo- E R R
motor. The position is measured by a poten- E Rmns E
tiometer and converted by a 16-bit A/D convert- .E Mow @
er. The position control system model is identi- Vi Controlled System o
fied in discrete-time by MATLAB as Fig. 2 Block diagram of the experimental system
Yk + 1) = 1.9932y(k) — 0.9932y(k — 1) + 0. 014, (%), (20)

the control law described by (19) is

'

= ﬁ — 1.8432y(&) + 7k + 1) + 0.857(k) + 0. 9532y (k — 1)]

gty IT?f + Ksat (0. 75s), @1

which is written in assemble language. by selecting value of K the experimental results of the
system to the sinusoidal input signal is shown in Fig. 3, For the comparison purpose, we put
also the response of the PD controller. It is shown by the dotted line in Fig. 3(a), from
which it is seen that when using the conventional PD controller, the position output shows
the hysteresis when the motion inverses the direction due to the existence of the nonlinear
frictions, while the better response is obtained by sliding mode controller, where the errors
caused by the parameter variation and uncertainty disturbance (in our case is the nonlinear
frictions) make the system a transient period to achieve the sliding surface and sliding motion
occurs for z >>0. 5s. The errors using sliding mode controller and PD controller are shown in
Fig. 3(b), and Fig. 3(c) is the control value.
7/ Conclusions

Variable-structure control of the DC servo drive position control system has been de-

scribed and implemented in discrete time. By ensuring sliding motion on the switching sur-
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Fig. 3 Some response of the sliding mode control system
face, insensitivity to parameter variations and disturbances is achieved. The design technique
is straight forward and requires little computational effort. On the other hand, by substitut-
ing smooth transitions acrossing a boundary layer to control switching at the sliding surface

the chatter.is reduced. The experiment has shown the satisfactory ersults.
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