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Stability of Nonlinear Closed-Loop Control System
Based on Generalized Frequency Response Functions

HAN Chongzhao and CAOQO Jianfu
(Institute of System Engineering, Xi’an Jiaotong University * Xi’an,710049,PRC)

Abstarct: Based on the representation of generalized frequency response functions (GFRF)
for a class of nonlinear control systems, the open-loop stability has been investigated in [1], and
the closed-loop stability is discussed in this paper, and some input-output stability criterions in the
frequency domain are given as well. A simulation example is used for verifying the results.
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1 Introduction

In recent twenty years, the control theory has been developed so vast and complex that
control engineers can not totally understand what to do on earth in the theoretical research.
The traditional PID controllers are still used in most of the industrial control systems. It has
been a perfect irony and a powerful challenge for the theoretical reserch in control theory.
The classical linear frequency analysis (LFA) method is still used to design the industrial
controllers not only for its simplicity and utility, but also for its evident physical explanation
and experimental verifiability. Control engineers, however, have been puzzled by the nonlin-
earity in control systems for a long-time. The nonlinear frequency analysis (NFA) method
based on GFRE’s~%) provides a new thought to solve the nonlinear control problems. It is,
indeed, an extension of the classical LFA, and easy to be accustomed by engineers. Among
all control problems, the stability is the most important one.

An open-loop stability criterion for the polynomial class of nonlinear control systems has
been proposed in authors’ published papert, i.e., based on GFRF’s, the sufﬁcient condi-
tions for input-output stability have been given, and the further stability conditions for dif-
ferent special cases have been discussed respectively. In this paper, the relationship between
the open-loop GFRE’s and the closed-loop GFRF’s will be given, and the closed-loop stabili-
ty conditions will be discussed. In Section 2, a description of the nonlinear closed-loop sta-
bility problems will be described, and a general relationship between the open-loop GFRF’s
and the closed-loop GFRF’s will be given in the Section 3. In the Section 4 of this paper, the
closed-loop stability conditions will be discussed. Finally, a simulation example is used for
verifying the above results.

2  Description of Nonlinear Closed-Loop Stability Problems

Consider the single input-single output nonlinear control system shown in Fig. 1.

Where « ——control; y ——plant output; 7 reference input; w ——disturbance in-
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put; £ — process component of y; -

» —— disturbance component of y; w(t) =5

¢ — tracking error; H ——nonlinear ., 2() |

. . o+ e(t) u(t) + y(@

operatior of the process, i.e., z = S H et

H(u); S ——nonlinear operator of the -

controller, i.e. , u = S(e); P ——non-

linear operator of the disturbance, i. Fig.1 Diagram of a nonlinear closed-loop control system

e., v = P(w).

Then, the closed-loop control system can be described as
y=z+v=Hw) + P(w), Q2.1
u=S(), (2.2)
e=7r—y. (2.3

Assumption 2.1 All nonlinear operators in (2. 1)~ (2. 3) have the Volterra series rep-

resentations, 1. e. ,

20 = e = §“F r hy(yyee sz [[ e — 2)dr,, 2. 4)
n=1 n=1v — el i=1

o) = D00 = 2| | pee) TTw — o, (2.5)
- - i=1

n=1 n=1

oo

w@) = > u,(t) = iro ji sﬂ(rl,-",rn)ﬁe(t‘ — r)dr,, (2.6)

n=1 n=1Y T

and corresponding GFRF’s howyyeee y,), po(w, oo yw,) and 3, (@, ,w,) are proper rational
fractions of w;, i = 1,2, ,n;¥ n € N,
Assumption 2.2 r,e,y,2, 0 € X, u €U, w & W, where X, U and W are some extend-
ed Banach spaces, and
HU->X,P.W—X,SX—>U. 2.7
Define the compound operator L = HS:X — X, and the sum operator I + L.:X — X, where
I.X — X is the identity operator. Then the system (2.1)~ (2. 3) can be written as

y = L(e) + P(w); (2.8)

e =r — L(e) — P(w). (2.9)

Or d+ L)) =r — P(w). (2.10)
If the operator I + L has its inverse operator (I + L) ', X — X, then

e=U+L)'r)— T+ L) 'Plw), (2.11)

y=LU+ L))+ [I— LU+ L)' JP(w). (2.12)

Definition 2. 1 The nonlinear closed-loop control system described by (2.1)~ (2. 3) is
L, -stable, if

raweijeﬁyEpr 1<P<oo, (2.13)

where L, is the Banach space with norm as
oo 1/
Hx!lp=(J lz@rde] 1< p<eos e =esssuplz@]. (2.1

Definition 2.2 For the nonlinear control system (2.1)~(2.3), fw(®&)=0,¥ ¢t € R,
it is said to be the tracking stability problem; if 7(¢) = 0,Y ¢ € R, it is said to be the distur-

bance stability problem.
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3 Relationship Between Open-Loop GFRF’s and Closed-Loop GFRF’s

At first the GFRF’s of the compound operator are considered.

Lemma 3.1 Let X and U be extended Banach spaces, H:U - X, and S: X — U be non-
linear operators with GFRF’s {h,} and {5,} respectively, the compound operator L = HS:X

— X has GFRF’s {/,} and
[ (0) = k(w3 (0), (3.1

n
Lo, o) = >0 D hplotee o, sop oo @, e @)

M1k bk, =
* §k1 (wy s 9wk1)§lz2(wlzl+l g 9wkl+lz2)'"§km (wn—km+l yooyw,), Y nEN, n=22,
3.2
where £, € N,
Proof Because

HOEDNAC)
n=1

= i(zﬂ)—(mfl)J‘m eee
m=1 -

==

J“’ ilm(w T Wy T ket — W,y 3 Wy 0" 5 Wy,)
(0 — Wy — o — w,)ia(w,) i (w,)dw, *dw,,

7
= 2(27r)7(m—1).[00 ...J ﬁm(w Wy et W, Wyt ’wm)
m=1

— oo —oo

N o0 o
- (k-1 2 1 1
LSt e G 00— — ol — e ol )

k1=1
ce(w— wy, — 0 — @, — WP — e — w,ﬁ}))é(wél))---é(w,ﬁ;’)dwé“---dw,:)]
o (o] o0
IS0 [T T g e e el e 0l
k=1 oo J—eo :

e e(w, — w§2) — ees — wé?)é(wé”)...é(wéj))dw?)...dwg)]...

> oo (s
T @ [T [T S — e = = a0 )
i

k=1

s e(w, — @f” — e — @f)e(wf) (w0 )dwfP e dwf Jdw, e dw,
and £, is a function of n -tuple & , and by means of comparison of degrees in é, we have

2(0) = hy(0)3,(@)e(@)=>] () = h ()5 (@),

2, (@)= hy (@) + (20 j T (0 — o w0$)e(w — wf)e(w)dw
B }12(0) — w,,wy)5(w,)é(w — wz)é(wz)dwz

co

+ <zn>—1j

= (Zﬂ)ulj‘oj [ﬁl(w)gz(w — W, ,W;) ~+ iiz(w — Wy ’wz)gl(w - w2)§1(w2)]

2 é(w— wy)eé(w,)dw,
=>zz(w1 yWy) = fll(wl + wz)zz(wl ywy) + flz(wnwz)zl(wl)zl(wz) ’
Siinilarly, (3. 2) can be obtained.

Next, the inverse operators GFRF’s are considered.
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Lemma 3.2 Let X be an extended Banach space, L:X — X be a nonlinear operator with
GFREF’s {l,}, and I: X — X be the identity operator, the sum operator I + L;X — X has its
inverse operator G = (I + L)71.X — X, and its GFRF’s are {g,}, thus

gi(w) =A +1D7, (3.3)

én(wly"'7wn) == (21(w1 ‘+‘wz '+‘"' ’+‘wn))_l

. Z Z Zm(a)1 4 oee +w’*1’“’k1+1 oo +wk1+k2""’wn-km+1 doee dw)

m=2 ke, =n
c & (@00 )8y (W 1y sy g )8y (@ yyyves @), Y =2, (3.4)
where k£, € N,V j.
Proof LetR =1 4 L.X — X be a nonlinear operator with GFRF’s {#,} , then
F(@) =1+ (@), 7 (0,000, 0,) = L@, ,0,), 722
Because G is the inverse operator of R, then GR = RG = I, or
o) g (@) = A+ Lw)g (o) =1,
E Z Pl + oo @ @y g o b 0 @, g o ©,)
m=2/z1+'"+lzm=n
c G (@@ Y (0 a0 ) gy (0, yr,w,) =0, Y 2> 2.
Thus, (3.3) and (3. 4) can be proven.

Finally, the relationship between the open-loop GFRF’s and closed-loop GFRF’s can be
obtained.

Theorem 3.1 Suppose that the assumptions (2. 1), (2. 2) have been made for the non-
linear closed-loop control system (2. 1)~ (2. 3). Let L = HS.X - X with GFRF’s {/,}, G =
(I + L)7':X — X with GFRF’s {g,}, then the GFRF’s of L and G can be calculated by (3.
1) and (3.2) or (3.3) and (3. 4) respectively.

Proof This result can be obtained from Lemma 3.1, 3. 2 directly.

4 Closed-Loop Stability of Nonlinear Control Systems
Now, the corresponding linear component of the nonlinear closed-loop control system is
considered
er(w)= g () (w) — g (w)p,(w)w(w)
= (1 + A~ (@)5,(@) 77 (@) — (1 + A (@3 (@) p () (@), “4.D
Si(@)=1,6,(0) + p, (@)t (w)
= I (@3, (@)[1 + A (@5, (@) ] '7(w)
+ [1 — A (@), (@) (1 + Ay ()5, (@)1 ]p, ()t (). 4.2)

According to [1], if the closed-loop nonlinear control system is L, -stable, a necessary

condition is that the corresponding linear component is L, -stable, i. e. , '
&1l o < 00, [ 815, | 0 < o0, Hzlé'l o <00, | (l“zlgl)ﬁl [ o << oo,
. (4.3
| «is the He.-norm. Because the transfer functions &,,8,5,,/,£, and (1 — Lg)p

where |

are all the proper rational fractions of @, the H..-norms of them are dependent on their poles
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respectively. If there are no poles of them in the right closed half-plane, the corresponding
linear component of the nonlinear closed-loop system is L, -stable.

Next, the tracking stability problem is considered.

Theorem 4.1 For the nonlinear closed-loop control system (2.1)~ (2. 3) withw (@) =
0,Vte R,if

1) for any n € N, A, (@, ,+,,) and §,(w,,*** ,w,) are proper rational fractions of w;,7 =1,
IRT

2) the corresponding linear component of the nonlinear closed-loop system is L, -stable;

3 Let [ A, [l w = sup. o lhil@, 00| =B, VnEN,

sl oo = sup,, [si@) | = 4 >0,

H ';n H oo = SUP, PR |;n<w1’""wn)l = An < an/vll’ n > 2’
1 n

n

gol = /31’ 9071 = z Z Bmalel'"akmy n > 29 k,‘ 6 E\E[,

=1k 4tk =n

g Il w = sup, |1+ A(@)§ (@)™ = p, >0,

O=1, O,=p >, >, @Xb0, n=2, kk €L,

m=2k +eth, =n

the series E @A, 0,07 are convergent ;
m=1 f=1

4)# € H,(— c0,00), i.e., the reference input spectrum is absolutely integrable, then
the tracking system is closed-loop internal L, -stable, i.e. ,
r € L,(— c0,00)=>e € L,(— 00,00),
or closed-loop input-output L, -stable, i.e. ,
r € L,(— o0,00)=>y € L,(— o0,00).
Proof Forw(?)=0,Y ¢ € R, the system equation is
e=U+HS) ') =UA+L)"0) =G0),
or y=HSU+ HS) '(r)=LU + L) '(r) = LG(@).
Because the GFRF’s {A,} and {5,} of H and S are proper fractions of w;, therefore, so the
GFRF’s {é,} and {g.} of L and G are. Thus, there exists @, > 0 such that
D | = SUDey e Vi eres ) [y 18 [ e = B [y s0) |
I Z,, [ o = SUPw, 0, < |Zn(w] s, | | &.ll . = SUPa, e 0, <y F-ACRINID IR
By 2), £,(w) has no poles in the right closed half-plane, so that
1811l = sup. <o, | (1 + hy (@03 (@) = p, < oo,
According to Theorem 3.1 and from 3), we have
| A < | hy [wllsill w =BA =@A, -,

n

P e <D0 20 Nhallo syl 18, 1« <2 20 Batywa X =@k =2,

m=l by ek, =n m=1 ky 4tk =n

o . = g
So 2 N ] e << Z%/‘Z‘ <K,=¢eh = z ! where K,and K, are constants. Therefore, we
n=1 n=1 n=1

nl

have
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I lle=8<oo, [sllw=4<oco, Yn€&l

Furthermore, from 3) again, we have

n

T o< la >y >0 Ihllelg o lé e

m=2k ek, =n

Assume that || &, | « < 0,01,V n € XN, the recursive algorithm is obtained by

n

I llw<e>), 2, @A 0,0 = 0.0

M= by btk =n

oc n

o o 2
N Y K3
So ”ZE gl e << ;9,,{0? < K,=¢elk = Z mE where K, and K, are constant too.

n=1

H 7l 17 <L (by(4)),then by using Theorem 3.1 in [,
lell.< Z lell, < Z(KgL)n/nz — ek = M,

The closed-loop system is mternal L, stable
Similarly, Let {f,} be the GFRF’s of the closed-loop nonlinear operator from r to y,

then by means of Theorem 3.1,
I fl < |l 21 ol &1l e < BiAL, oo

FATES YD Y A T P T

m=1 kl4‘m+km:"

=Ll g lle+ > > Whlallg eIl g,
m=2k1~..‘+.km:"

< iAo + 00,00 = (A + pr D000 = 710,00, Y n=2
where 7, = ﬁl/\ + oty and 0 << 7, << oo, so

— K
leflIm 71Z;§
n=1

If |71, I 7/l . <L, then by using Theorem 3.1 in [1],

kL)
nynmzimuz 27 KL M, = M,

n=

The Closed—lo'(‘)p system is also input-output L, —stable.

oo

Finally, the disturbance stability problem of the nonlinear closed-loop control system
(2.1)~(2,3) will be discussed.
Theorem 4.2 For the nonlinear closed-loop control system (2. 1)~ (2. 3) withr () =
0,Y t € R;if
1) for any 7 € N, A, (@, y0,5+00 ,@,) ,5,(@; 0y, ,@,) and p,(w,,w,,++,w,) are all proper
rational fractions of w;,7 = 1,2, ,n;
2) the corresponding linear component of the closed-loop system is L, -stable;
Dlet A, le=8> I8le=4>0, [&lo=4a<ak, n=2;
20l =m>0, 7 llc=p<dw, ¥Yn=2;
o=>p, u= Zlk \ zk Bu @, n=2, k€N,
ey Y Ry

“§1”w:/’1>07
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n

=1, 6o=p>, >, @GN0 0, n=2 k€I

m=2 k) 4k, =n

0y =, 1‘719 o, = Z Z emp'fakl”_'akm, 71> 2, k €N,

m=1k1+"'+km=n

The series 26,,/4 y Zqo,,/l?, Zﬁnp'{ and ZJﬂ,u'{ are convergent;
a1 nel a1 a1
4)w € H,(— 00,0),
then system is closed-loop internal L, -stable, i.e. , w € L,(— o0,00)=>¢ € L,(—o0,00); 0r
closed-loop input-output L, -stable, i.e., w € L,(— o0,00)=>y € L,(— o0,00).
Proof For the system equation
e=— I + HS)*P(w) =— U +L)7P(w) =—GP(w) =Q(w),
or y=[I—HSU +HS) P (w) =[1 —L{d +L) P (w) = [I —LQ]P(w) =F(w),
similar to Theorem 4.1, we have
|81l o =pr<<oo, I z1 | <P =071
1) <gks n=2 I M<ZM<KO =eh,

n=]

H gn “ oo <6n40¥7 2 “ gn H =] \<\20an \<\K2 :ekz’

n=1 n=1

and by 2) and 3), we have
g Il < &Il - | 611l =011 =014115

Nanll o <D >0 Hawlcll o ool Bo, Il <> DL Oupton o i
m=1 Iz1+‘ =

m= kA Ak, =

E

=0, n=2, ki EN,
50 Z H Q. ” o <Zd"/u1 <K, =e ks

I lwl.,llwl:< L then by using Theorem 3.1 in [1],

el ,< leeuz 2<KL>/nv=es—M3,

the closed-loop system is mternal L, -stable.

Similarly, the system is also closed-loop input-output L, -stable.
5 Simulation Examples
Example 5.1 The tracking problem is considered as
The plant (H) ;9 + xy +y +0y° =u@®); The controller (S):u(t) = ke + kaé + kijedt.

Computing §1(w),sz(w1,wz)953(w1 9w29w3) h (w), h (wnwz) and hs(w1 swszs)

. _ Jjw . _ 4 -
5 (w) = g + ko + %’ §(w,0,) = 0, §;(w, @, ,@3) 0,
fh(‘”) =T +1/.zjw-+— 1’ flz(wl?wz) = 0,

By (0 y05) = — B[ (— (@, + @, + @)? + i@y + @, + @) + D (= @ + pjoy + 1D
. (— @k + pjw, + 1) (— @ + o, + DI
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Assuming that # = 5,6 = 0. 00034 ,k, = 1,kg = 5,k = 10, it is known that they satisfy

the condition 1) in Theorem 4. 1. By Nyquist st

ability criteria, it is proven that the corre-

sponding linear component of the closed-loop system 1s L, -stable. Furthermore, A=1l,q =

1,0 = 1.0802, and Tab. 1 etc. , by using the recursive computing, the series Z%K? and

z&np’{ are convergent. In terms of Theorem
n=1 :

4. 1, the system is closed-loop L, -stable.
The response diagram of the nonlinear sys-
tem is shown in Fig. 2, and the phase-plane
diagram is shown in Fig. 3. From the dia-
grams we can see that the system is stable,
which is identical with the theoretical result.

yz T T T
. . 1
: : f
H : H
H : H
1 ! : :
..... IR RPN PR
: . H
: H H
H ; :
: H
' H
: L '
obd-b-bofad-de A A WP
b ;
: : f
H H H
. H H
H '
! H
_1 ......... e emw—- beme -
: : :
H : H
: H H
H : H
2 H : : t
— :

10 20 30 40
Fig.2 Response diagram

Assuming that # = 0.1,0 =— 0. 00034,
k, = 1,k; = 5,k = 25, it is known that they
satisfy condition 1) in Theorem 4. 1. By
Nyquist stability criteria, it is proven that
the corresponding linear component of the
closed-loop system is L;-stable. Further-
more, A, =1, ¢y =1, p, =1.3318, and Tab.

2, by using the recursive computing, the

m=1

Table 1 Parameters

n ‘3» A,, : a, A Gn
1 1 1 1 1 1
2 0 0 0 0 0
3 3. de-4 0 0 3. 4e-4 3.68e-4
4 0 0 0 0 0

5,2

e - E-X bbbl o il

[oJ) RN S BY € (222) 3 & e ikt duiniale
SN T R .§ ..... PR < S

§ : :
— 2 "
-1 0 1 2

Fig. 3 Phase-plane diagram

Table 2  Parameters
n 8. A, a, @ 0,
1 10. 0125 1 1 10. 0125 1
2 0 0 0 0 0
3 3.4171 0 0 3.4171 4.5509
4 0 0 0 0 0
5 0. 0035 0 0 0. 0035 62.137

series Z%/\T is convergent and Zﬁ,,p’{ is divergent. In terms of Theorem 4.1, the system

m=1 =1

may be not closed-loop L; -stable. The response diagram of the nonlinear system is shown in

100

50} ----

...................

......

— 50 b=~

L ecccecpommcangtecccoqeenaand]

— 100

5 10 15 20 25
Fig. ¢ Response diagram

300
200
100

ot

— 100

~ 200

— 300 :
—100 —50 0 50 100

Fig. 5 Phase-plane diagram
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Fig. 4, and the phase-plane diagram is shown in Fig. 5. From the diagrams we can see that
the system is divergent with oscillating.

© Conclusion

The closed-loop stability criteria for the polynomial class of nonlinear control systems
based on GFRF’s are also similar to the ones of linear closed-loop system, the zeros and
poles of the linear transfer function £, (s) = (1 + A,(s)$,(s)) "' plays main role. But the con-
vergence of GFRF’s norm is also a special desire for the nonlinear closed-loop control sys-

tem.
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