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Abstract: In this paper, the tracking problem of known discrete time linear nonminimum
phase plants is investigated. It is proved that a large class of linear controllers (which will be spec-
ified later in our paper) for a known nonminimum phase plant can not track arbitrary bounded set
point sequences asymptotically. This indicates that it is impossible to design a Clarke-Gawthrop
type self-tuning controller or an adaptive pole placement controller for unknown nonminimum
phase plants to track arbitrary bounded set point sequences asymptotically.
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7 Introduction

It is well known that one can design adaptive controllers for discrete time linear mini-
mum phase plants which would ensure both global stability and asymptotic tracking'l. For
nonminimum phase plants, many adaptive controllers (including both Clarke-Gawthrop type
self-tuning controllers and adaptive pole placement controllers) had been proposed, and
global stability of Vthese adaptive controllers had been well estabished ([2~81]). However,
the tracking ability of these adaptive controllers is not so well studied such that the following
questions are hardly answered:

1) Can these adaptive controllers track arbitrary bounded set point sequences asymptoti-
cally?

2) If they can not, what kind of bounded set point sequences can they track asymptoti-
cally at most? that is ,what is the largest tracking ability of them?

To the best knowledge of the authors, no satisfactory answers are yet available.

Motivated by the above two questions, the tracking problem of known nonminimum
phase plants is investigated in this paper which proves a large class of linear controllers can
not track arbitrary bounded set point sequences asymptotically, but they can asymptotically
track a special class of bounded set point sequences which satisfy trackable condition. The
result of our investigation indicates that it is impossible to design Clarke-Gawthrop type self-
tuning controllers or adaptive pole placement controllers for unknown nonminimum phase
plants which can track arbitrary bounded set point sequences asymptotically, they may track
a special class of bounded set point sequences satisfying trackable condition asymptotically at

most.
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2  Structure of the Linear Controller
Consider the control of a discrete time linear SISO plant of the following form
Al DY@ = Bg™Hu®) (2.1)
where y(#) and #(¢) denote the scalar system output and input. A(g~") and B(g™!) are scalar
polynomials in unit delay operator ¢~ ' as follows:
Al =1+a g+ = + aq " Bl@ ) =bq '+ =+ b "
The following assumption will be made.
Assumption A1  A(g ') and B(¢g™") are relatively prime.
For known nonminimum phase plant (2. 1), we investigate the tracking ability of linear
controllers which have the following form
E(@@ Hu@) =— F(g Hy@® +T@ Hy" @©) (2.2)
where {y* (£)} is an arbitrary bounded set point sequence, E(g™') is a monic polynomial,
with E(g™) and F(g™") to be chosen such that A(q D E(g™!) + B(g7)F(¢™") is strictly sta-
ble, i.e.
A(GDHE(@™) + B(@HF (@) #0, forlgl =1
and with T'(¢"!) to be chosen arbitrarily.

The control system is shown in

() + u(t) y@)
the following figure. ——wned T (g~ 1) /E(g™ )] 1B(g™1)/Alg™Y)
Remark 1 Assumption Al en- -
sures the existence of E(¢7') and
F(g"). Different choices of F(g-1)/E(q)

E(@™), F(@g") and T(¢g"') may re-
sult in different controllers. It is Fig. 1 The control system _
easy to show that both Clarke-Gawthrop type self-tuning controllers and adaptive pole place-
ment controllers (including the controllers in [2~87]) can be written in the form of (2. 2) if
they are designed using true parameters of the known plant (2. 1). For example, if one takes
E(@g) =S, F(g") = R(@ Dand T (¢ ') =1, (2. 2) becomes the controller given in
[4]; if one takes E(¢™1) = R(g™)), F(g7) =— S(@g D andT(g™) =C" (g "), (2.2) be-
comes the controller given in [7].

In the next section, it will be shown that the linear controllers given by (2.2) can not
track arbitrarily bounded set point sequences when they are applied to known nonminimum
phase plant (2. 1) for any given E(g™"), F(g"") and T(g" ).

3 A Theorem Regarding Nonminimum Phase Plant

Definition A bounded set point sequence {y* (¢)} is said to satisfy Trackable Condition
if there exists a monic nonzero polynomial C(¢™") such that

i) }_i.IEC(q_l)y* (¢) = 0. ii) The order of this polynomial is minimal among those polyno-
mials satisfying i). iii) C(¢™") and B(g™"') are relatively prime.

A theorem is now given as follows.

Theorem 3.1 Under Assumption Al, applying the controller given by (2. 2) to the
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given nonminimum phase plant (2. 1), thenlim[y() — y* (z)] = 0if and only if the bounded

set point sequence {y” (¢)} satisfies trackable condition.

To prove Theorem 3.1, we will give two lemmas directly without proof.

Lemma 3.2 For a bounded set point sequence {y* (¢)}, if there exists a nonzero poly-
nomial C(g™") satisfying i) and ii) in the definition of trackable condition, and if there exists

another nonzero polynomial D(g™") such that limD(g™)y* () = 0, then there exists a poly-

nomial L(g™") such that D(g™!) = L(g"")C(g™").
Lemma 3.3 For a bounded set point sequence {y* (£)}, if there exists a nonzero poly-
nomial C(¢™") satisfying i) and ii) in the definition of trackable condition, then
Cl@"H+#0 for |q| <1.
Using Lemma 3. 2 and Lemma 3. 3, Theorem 3.1 can be proved as follows.
The proof of theorem 3.1 It follows from (2.1) and (2. 2) that
S(g Dy = B@ DT (@ Dy @), (3.1
S Du@) = Alg")OT (g Dy" @). (3.2)
where S(¢g7") = A(g™DE(g™") + B(g"HF (g™ H).

Since S(¢7') is strictly stable and the set point sequence {y* (¢)} is bounded, it follows
from (3.1) and (3. 2) that {y(¢)} and {# ()} are both bounded sequences. This result shows
the controller given by (2. 2) can ensure global stability when they are applied to nonmini-
mum phase plants.

From (3.1), one gets

S@Oy@® —y* O]1=[Bl@HT @™ — S Hy* ). (3.3)
It follows from (3. 3) that lim[y(t) — y* ()] = 0if and only if
im[B(q)T(g™) ~ Sg™Hy* &) = 0, (3. 4)

Since the plant (2. 1) is nonminimum phase and S(¢~') is strictly stable, it is easy to
show that
B(@ )T (@) — S(g™") #o. (3.5)
If (3.4) is equivalent to {y* ()} satisfying trackable condition, then Theorem 3. 1 is proved.
First, it will be shown that (3. 4) implies that {y* ()} satisfies trackable condition. It
follows from (3.4) and (3. 5) that there exists a nonzero polynomial C (g™ ') which satisfies
i) and ii) in the definition of trackable condition. Hence it follows again from (3.4), (3. 5)
and Lemma 3. 2 that there exists a polynomial L(¢g~!) such that
B(@ DT (@™ — S = LgHC@™M
that is
S(@™) = B(@g )T (g™*) — L(g7)C(g™M). (3.6)
It follows from Lemma 3. 3 that all zeros of C(¢™') are not within the unit circle in the com-
plex plane. Using this fact and noticing that S(¢g™!) is strictly stable, it follows from (3. 6)
that C(¢™") and B(g™!) are relatively prime. Now, it has been shown that C(g™1) satisfies 1)
~iii) of the definition of trackable condition, i.e. {y* (¢)} satisfies trackable condition.

Secondly, if {y" (¢)} satisfies trackable condition, we will prove (3. 4) can be ensured if
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T(g 1) is chosen properly. Since C(¢™") and B(g™") are relatively prime, it is easy to prove
that we can choose two polynomials T(¢™*) and L(g™") such that

S(g™) = B(g™HT (g — L(gHC(g™H.
Noticing that }iIZ.}C(q_l)y* (t) = 0, (3.4) follows from the above equation immediately.

By now, (3.4) is proved to be equivalent to the set point sequence {y* ()} satisfying
trackable condition, and this completes the proof of Theorem 3. 1.

Remark 2 For nonminimum phase plants, theorem 3.1 shows that the linear con-
trollers given by (2. 2) can track asymptotically a special class of bounded set point se-
quences satisfying trackable condition at most. From Remark 1, this implies that both
Clarke-Gawthrop type self-tuning controllers and adaptive pole placement controllers can
asymptotically track a special class of bounded set point sequences satisfying trackable condi-
tion at most even if they are designed using the true plant parameters.

4 An Example

In order to make the conclusion of Theorem 3.1 clear, the following example is given
for illustration.

Example Consider the following nonminimum phase plant

y@) — 2yt — 1 =ul— 1) —ult — 2.

If the controller given by (2.2) is applied to the above plant, it is easy to show the fol-
lowing conclusions.

1) The controller given by (2. 2) can not asymptotically track nonzero constant se-
quences {y* ()} i.e. y @) =c# 0.

For y* (¢) == ¢ # 0, one can choose C(¢”') = 1 — ¢~', noticing that B(¢g™") = ¢7'(1 —
g™") and S(g™) is strictly stable, it follows from (3. 1) that limy(¢) = 0, therefore 1) is fol-

t—=oo

lowed.

From the above conclusion, one can see that, though y* (¢) = ¢ % 0 satisfies i) and ii) in
the definition of trackable condition, }irg[y(t) — y* ()] 5~ 0since B(g7') and C(¢™") are not
relatively prime. This shows that iii) in the definition of trackable condition is necessary.

2) HE(g™") and F(¢™") are chosen such that S(¢™") =1land T (g ") =1, and if y* (&) =
sin0. 01¢, then the controller given by (2. 2) can not track this sequence asymptotically.

Since T'(¢™) =1, one gets S(g™) — B(g" )T (¢g"') =1 — ¢ ' + ¢ ?and therefore }ir}i(l
— gt g Dy @) = }irg(l — g7' 4+ ¢7®)sin0. 01¢ # 0, then it follows from (3. 1) that
}ir}_:[y(t) —y @]F#0.

From the above conclusion, one can see that }_i}g[y(t) — y* (£)] 5 0 although y* (¢) sat-
isfies trackable condition with C(¢g™!) = 1 — 2c0s(0.01) ¢~ ! 4+ g ?since E(g" "), F(g™') and
T (g™') are not chosen properly.

5 Conclusion
In this paper, the tracking problem of known nonminimum phase plants is studied. It is

proved that linear controllers given by (2. 2) can and only can track asymptotically a special
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class of bounded set point sequences satisfying trackable condition. That is, there is no lin-
ear controller in the form of (2. 2) which can asymptotically track arbitrarily bounded set
point sequences. Since there is little possibility for adaptive controllers to perform any better
than their corresponding nonadaptive ones designed using the true parameters of the plants,
therefore from Remark 1, one may conclude that both Clarke-Gawthrop type self-tuning con-
trollers and adaptive pole placement controllers may at most track a special class bounded set
point sequences satisfying trackable condition asymptotically. Till now, we have given a rel-

atively complete answer to the questions raised in the introduction.
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