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Abstract: For a given discrete event system DES G and a prescribed maximally permissive le-
gal language specification MPLLS K ,the mission for supervisory control is to find a supervisor S
such that the system under supervision will never breach the MPLLS,i.e. , L(S/G) & K. The tra-

ditional method to realize this involves the computation of so-called supremal controllable sublan-

exhibits a new approach to the problem which can alleviate the necessity both to compute K'and to
construct S explicitly. Instead , the supervisor will be dynamically realized with the evolution of th
DES G and the prescribed MPLLS K . To a large extent,the approach is base 6n an on-line set in
clusion test algorithm so it will be proved to be useful in real applications,which is enhanced by an
example towards the end of the paper.
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1 Introduction

The previous work on the control of discrete event systems (DES) by a language model
is primarily focused on the controllability of a prescribed legal sublanguage K of the given
system DES G or the existence of the required supervisor S0I . Attention is then put on the
computational aspects of the so-called supremal controllable sublanguage K * if the given sub-
language K of L(G) would be uncontrollable. It has been proved that the computation of K!
could be finished in a polynomial-time complexity when the system is fully observable®*. To
real applications ,however,given a system DES G and a prescribed maximally permissive legal
language specification MPLLS K, we will still have to compute K" at first and then assign
controls for each of its legal sequences of the language L(G) which belongs to K*' and thus a
real supervisor S has to be constructed with a large number of states and event transitions,
such a construction of S will appear uneconomic. _

This paper proposes a dynamic realization approach to the above supervisory problem
such that there is no need to construct the supervisor explicitly while the control task is im-

plemented by means of reference to the MPLLS K for every newly arrived state during
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the evolution of the DES G . The approach alleviates the potential combinatory explosio.n
problem of states or transitions even for a large-scale automaton-modeled DES and/or its
correspoding MPLLS K. We assume that our discussions is confined to the closed language
of L(G) but it is not difficulty to extend our result to a more general situation. However,it is
not necessary to make assumption of the containment between L(G) and K, which represents
the case that the MPLLS K could be arbitrarily prescribed with independence of its underly-
ing DES.

2 Some Notations

We use G(¢) = (Q,%,8) to denote a DES modelled as a state machine in which Q is its
state set, X is its event set and is usually considered to be composed of a controllable part ¢
and an uncontrollable part 2,,6:3 X Q> Qs its state transition function and q € Qis an ini-
tial state,Let A be a subset of 3,we then use G(A4,q) to denote a partial DES in which &is on-
ly defined on A X Q.

In comparison with the traditional expression of automata (see,e. g.,[1]Jor[5]),the au-
tomaton defined here emphasizes the variability of its intitial state and/or its event symbol
set, Thus,for a given DES G(4,q;) ,there may be as many as |Q,q, | induced automata of
the form of G(A,q) where Qca,q) stands for a subset of Q induced from g¢; through A © X and
q € Q,q)is called A- reachable from g; through transitions all labelled by event syrhbols in A.
Let F(A,q,) be the family of automata induced by G(A,q;). Then we have a formal definition
of accessibility below.

Definition 2. 1 For a given DES G(g,) = (Q,3,8),G(g,) is called accessible if |F(Z,
g)| = |Q] and A- acessible if |[F(A,g) ]| = |Q].

From this definition,it is obvious that G(g,) is accessible iff G(gq,) is S-accessible. It is al-
so noted that if g;is A -reachable from ¢; then that G(g;) is A -accessible implies that G(g;) is
A -accessible,but not necessarily vice versa.

When G (g) is not A -accessible,then there will arise two disjoint subsets in Q ,namely,
Qg and Q — Qua,,» » among which G’ (¢) = Qa3 2,0) is A -accessible. Analogously,when
G(q) is not accessible G’ (¢) = Q.41 2,8) stands for the accessible part in G(¢). If G(g) is
not accessible,then none of the states in Q — Q. can be reached from q. Therefore, for a
specific deterministic automata family F(Z,90), we will always assume that G(q,) is accessi-
ble.

For a givenG(A,q), a string s = 6,**+0,1is a sequence of events which starts at g;and ends
up at 8(s,q) such that g, belongs to A fori = 1,+,% . Sometimes swe use 6(s,q)] or 1 8(s,
¢)! to denote that 8(s,q) is defined or not defined. For two strings s and ¢,s is called a sub-
string of £, denoted as s <t¢, if either s = or there is another stringu € L(G(A,8(s,9))) such
that su = ¢ . Thus, sL(G(A,8(s,q))) is defined to be the set of all the strings such that s can
be their substring,or formally,

sLIG(A,0(s,9))) = {t.:5 <},
where we assume that L(G(A »q)) is well defined according to
LGA) = {sis€ A" N 8G 1),
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Definition 2.2 A given sublanguage K of L(G(q)) is called controllable if the following
relation is satisfied:
) Vs e K,sL(G(Z,,8(s,9))) C K. )
For an arbitrarily given language K,K is not necessarily controllable in a sense that (1)
need not be satisfied. In that case,we are interested in getting its supremal controllable 'sub-
language Kt (See [2]). The following Proposition is regarding the computation of K* which
is stated by the terminology we defined in this paper.
Lemma 2.3 Given a DESG(g) and a MPLLS K, the supremal controllable sublanguage
K* can be calculated according to
K'= U  {s:s <t AsL(G(,,006,9))) S K}. (2)

1€ KNL(G())
Proof We first prove that K' as defined in (2) is controllable, namely, ¥ s € K,

sL(G(3,,8(s,9))) = K* holds.

Suppose on the contrary that 3 s € K ,but sL(G(Z,,8(s,9))) & K*' . By definition of
Kt , sL(G(Z,,8(5,9))) C K and K' © K. Thus,there must exists some string s’ € 3" such
that ss' & K' while ss' € K and ss' L(G(Z,,0(s' ,¢))) & K both hold. On the other hand,by
(2)ss' € K and ss'L(G(3,,0(ss' ,q))) < K implies ss' € K*' ,which forms a contradiction.

Next we show that the Kt so defined is a unique supremal controllable sublanguage of
K. Suppose that for a given string s € K such that sL(G(Z,,8(s,q))) C K holds. Then since
0(s,q) is defined, s € K (| L(G(g)) holds. Noticing that s < s, we conclude that s € K*!
holds. Q.E.D.

A supervisor S is a map to 2% from every allowed string s in L(G(q,)) which is restricted
by the MPLLS K, namely,

S(s) = {o0:0¢€ X} if s0L(G(Z,,0(s0,q9,))) E K. 3)
For a given DES G(g,) and a MPLLS K, if a supervisor is synthesized according to (3),then
‘the system under supervision,called SDES and denoted as .S/G(g,), wil behave by the follow-
ing rule;
Vs & L(S/G(gy)) and 0 € 3,50 € L(S/G(q,))iff both s6 € L(G(g,))and o & S(s).

A supervisor S for a DES G(g) is called to be minimally restrictive w. r.t.a MPLLS K if
K for any other supervisor 8’ ,L(S'/G(q)) & L(S/G(g)) . It has been well known that for a
given DES G(g) and a MPLLS K, if S is its manimally restrictive supervisor,then K =
L(S/G(g)). (See [4]and [2])
3 Toward Dynamic Supervision

From the preceding section,we know that at any moment the behaviors of a DES G(gq)
can be characterized by means of its occurred event string s and the language L(G(s,q)) pro-
duced following the s. We also observe that the SDES.S/G(g) under a MPLLS K can be maxi-
mally implemented through computation of K' . Now assume that the given MPLLS K could
also be represented as a deterministic and accessible automaton Gx(q¢) = (Q',>,8") . Then
from Lemma 2. 3 we have

Proposition 3.1 Given a DES G(q,) and a MPLLS L(Gk(g})) ,the supremal control-
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lable sublanguage K* can be calculated according to

. ! !
L(GK(qé))T zzeKnHG(qo)){s s <t N L(G(2,,8(5,900)) S LGk (2,0 (s,g5)))}.  (4)
Proof Immediate from Lemma 2. 3. Q.E.D.

Thus,for a given DES G(g,) and a MPLLS L(Gx(g{)), to test if a string s is allowed to
occur in L(Gx(g,)) such that it is controllable and is allowed by L(Gx(g,)) could be reduced
to test if L(G(Z,,0(s,g0)) & L(Gx(Z,,0"(s,95)) holds. To be concrete,the following algo-
rithm presents a procedure inclusion to make such inclusion test for a given pair of automata
G(g) and G'(¢").

Algorithm 3.2 Inclusion (G(g),G' (¢'))

Input: G(g) = (Q,2,0) and G'(¢') = (Q',X,8).

Output: 11if L(G(Z,,(g)) & L(G'(Z,,(¢')) ,and 0 otherwise.

Comment: lable(),push() and pop() are three pre-defined procedures.

1) label (¢) and label (¢’) ;push (g,q¢') ;

2) do while pop (a,b) ;

3) for eacho € 3, ;

4) if 0(o,a)! A 0" (a,b)] then exit(0);

5) else; y

6) if (0(o,a)! A 8(a,b)1) but not both 8 (c,a) and 8,(c,b) were labelled ;

7) then begin label (6(s,a)); label (&' (0,6)); push (8(a,a)!,d (6,6)) end;

8) exit(1).

Some remarks on the algorithm are in order. We note first that the algorithm will finish
its inclusion test in the worst case with the complexity of O(|Q || @ || Z.|) . In other words,
if the G(g) and G’ (¢') are selected to be regular then the inclusion test can be accomplished in
a polynomial-time bound. Secondly,from line 4 of the algorithm,we know that the algorithm
indeed makes comparison between G(g) and G' (¢') for every string in G(¢) except those that
there are no corresponding strings in G’ (¢'), in which case the conclusion of L(G(Z,,q)) €
L(G'(2,,q9")) is obtained. It is worthnoting that once a string in G(g) is found not included in
G'(¢'), no further comparison is needed. Therefore ,upon completion of the algorithm ,there
may be three situations,i. e. , L(G(Z,,¢)) & L(G'(Z,,¢')) when exiting as “1”,0r L(G(S,,
7)) DL(G'(Z,,¢')) when exiting as “0” or L(G(Z,,¢)) # L(G' (Z.,¢')) when exiting still as
“0”, '

Now that we have developed an algorithm for set inclusion test,we can proceed to realize
dynamic supervision for a given DES G(g,) and a MPLLS K as follows. For every controllable
event at any state of the system,we investigate in advance if this event occurring will lead the
system to any unrequired state. If this is the case,then the event is disabled. First we note
that if L(G(Z,,q,)) & L(Gx(3.,q))) sthen,no control mechanism can ensure that the system
would behave definitely within the realm of MPLLS K, which can be stated as a lemma be-

low.

Lemma 3.3 Given a DES G(g,) and a MPLLS K. There is a non-trivial supervisor S
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such that L(S/G(ge)) # (Jonly if L(G(2,,00)) & L(Gk(Z,,ql)) .

It is worthnoting that the condition for non-trivial supervisor S in Lemma 3. 3 is only
necessary but not sufficient. This is because we could not infer from its intial state gg of Gg
that there exists at least subsequent state,say &' (¢,9{) wi.l. ¢ € 3, such that both 6(g,q,) is
defined and L(G(Z,,8(0,q,))) & L(Gx(Z,,0'(6,9))) holds. On the other hand,there al-
ways exists a minimally restrictive supervisor S that makes L(S/G(g,)) = K ' . Thus we have

Lemma 3.4 There exists a non-trivial supervisor S for a given DES G(g,) and a MPLLS
Kiff K' £ .

Thus ,the minimally restrictive supervisor could be realized dynamically with the evolo-
tion of the system such that for every occurred event that is allowed by both Gand K, we dis-
able in advance all the controllable events that may follow the event, The following algorithm
formally summarized the procedure of dynamic supervision.

Algorithm 3. 5

Input: G(g,) and Gx(gq;) .

Output: Legal behaviors of Kt

1) ¢<=¢0,9'<q'o;

2) if inclusion (L(G(Z,,9)),L(Gx(Z.,q'))) = 0 then stop ;

[{o:0€ 2}, if inclusion (L(G(Z,,¢)),L(Gk(Z,,9'))) = 0,

| .
WD otherwise;
4) Wait for and supervise the state transition of G from ¢ to 6(c¢,q) with o & S(q) ;

3) S(g) =

5) g«68(0,q); ¢ <06(a,q"); goto 3).

It should be pointed out that the above algorithm would take in the worst case the time
of O(|Z: | Q|| Q || Z.|) for every step of on-line supervision, which is still solvable in a
polynomial-time complexity.
4 A Case Illustration

A simplified salt conveying system is shown in Fig. 1 where two different kinds of salt
are continualy transported through two Conveyers A and B, three push-open Valves labeled
V', through V; control the flow of the salts to Silo 1 and 2 and Junk is used to load the salts

that can not be further poured into the Silos.

Conveyer A ]_ ) e

Vl, ‘ Vs

RIS TIL [t = e
Conveyer B I__'.'i_ AR -y

V37T R 3 I:L
T [ )

Fig. 1 A simple salt conveying system

Suppose that the Silos will be automatically closed the corresponding Valves once they

are poured full and keep closed until the Silos get emptied. Henceforth,for example,the salt
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in Conveyer A will automatically be transported to the Junk during Silos 1 and 2 are not emp-
ty and have the same kind of salt as on Conveyer A , which implies Valves 3 has to be pre-
vented from opening. On the other hand, Valves 3 during the above period may be controlled
open since Silo 1 might have undergone the process that empties the salt of the same kind as
on Conveyer B, which as supposed would make Valves 3 controllable.

The task for the control of such a system is twofold. The first is to prevent different
kinds of salt from being intermixed in the same Silo during the same period of time when the
Silo is receiving one kind of salt. The second is to make full use of the two Silos so that as lit-
tle salt as possible be poured into Junk where different kinds of salt are allowed to be mixed
but will hence become useless,

Let V; denote an event to open the ith Valve which is controllable whereas V. denotes an
uncontrollable event to close the ith Valve. The possible states of the Conveyer A are

0) both Valves 1 and 2 are closed and the salt is poured into Junk;

1) Valve 1 is open and Valve 2 still closed and the salt goes into Silo 1;

2) Valve 1 is closed and Valve 2 is open and the salt goes into Silo 2;and

3) both Valves 1 and 2 are open,when salt goes into Silo 1.

Similarly,the possible states of the Conveyer B are;

a) Valve 3 is closed and the salt is poured into Junk;and ,

b) Valve 3 is open and the salt goes into Silo 1.

The states transitions concerning Conveyer A in response to the potential events V; and
Vifori = 1,2 are illustrated in Fig. 2(a) and the states transitions concerning Conveyer B in
response to events Vyand V;are illustrated in Fig. 2(b). The combined behavior of the system

G can then be shown in Fig. 2(c).

Fig. 2 States and transitions of conveyer A (a), conveyer B (b) and the system G (c)
It is noticed that once a valve is open,it can be assumed to be open again before it is un-
controllably closed. Thus one possible MPLLS K for the system may be as shown in Fig. 3

where we assume that some of the transitions are improperly specified.
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V.4V,

Fig. 3 the automaton of Gx for the MPPLS K which might be improperly specified.

Applying our dynamic supervison algorithm (Algorithm3. 5),we can conclude that the
‘following inclusion relations are true:
L(G(Z,,0a)) = (J S L(Gx(3.,q0)); L(G(Z,,00)) = {V;} & L(Gk(Z,,q,));
L(G(Z,,2b)) = (V.V} © L(Gk(Z.,q1));L(G(3,,2a)) = {V;} © L(Gk(Z,,¢,));
L(G(Z,,1a)) = {V,}) © L(Gk(3.,q:)); L(G(Z,,3a)) = {V,} & L(Gk(Z,,¢,)).
Analogously ,we can readily verify following non-inclusion relations :
L(G(2,,10)) E L(Gx(Z,,91))5 L(G(2,,18)) & L(Gk(3,,q5)) 5
L(G(Z,,3b)) & L(Gk(Z.5q1)) 5 L(G(Z,,3b)) E L(Gk(Z,,9:)).
Therefore, following the v,
dynamic supervision, we can
eventurally achieve the control
objective which is both within
the K and minimally restrictive
as well. Indeed, the SDES
S/G(0a) for this simple example

can be demenstrated in Fig. 4. (Cob,g0)
To be clear, we have denoted
each state of the automaton with

a pair of states in G and Gk re-

Fig. 4 the automaton for K w.r.t. L(G)

spectively such that for each
pair (a,b) in the automaton,the relation L(G(Z,,a)) © L(Gx(Z,,6)) must be true. It should
be noticed that if a real supervisor would be constructed,the state space for the supervisor
will have to be as large as the number of whole possible such inclusion relations that truely
hold.
5 Concluding Remark

This paper investigated a new dynamic approach for the supervision of a given DES
G(g,) and a MPLLS K . The approach is attractive since it alleviates the necessity to explicit-
ly construct a supervisor as was suggested in many other literatures. As has been seen,the
dynamic supervision scheme is by and large base on a set inclusion test algorithm (Algo-
rithm3. 2) which has been informally explained to be of polynomial-time complexity to the
cardinalities of states sets of both G(¢) and Gx(g') as well as the cardinality of event set 3.

However, when the system and/or the the MPLLS could be specified with some economic
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formalism (e. g. , hierarchical state machine®®)in which state is allowed to be folded ex-
pressed, direct application of Algorithm 3. 2 would in the worst case stil] result in a state
combinatory explosion problem. Thus our dynamic supervision approach would find its
widespread application only if some more efficient algorithm for set comparison test could be

fully developed,which is currently still under investigation.
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