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Abstract: This paper consists of two parts. In the first part,the problem of controller design
for linear continuous systems with prespecified Ho norm, circular pole and steady-state variance
constraints is considered, Furthermore,in the second part,the problem of performance robust con-
troller design for linear continuous uncertain systems with variance and circular pole constraints is
studied. Effective , algebraic, modified Riccati equation approaches are developed to solve the ad-
dressed problems. Numerical examples are provided to show the usefulness and applicability of the
present approaches.
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1 Introduction

The problem of constrained variance design has received much attention in the past
decade,since the performance requirements of many engineering control systems are natural-
ly described in terms of the acceptable variance value of the system states. Covariance control
theory™~® provides a more direct methodology to achieve the individual variance constraint
than the LQG control theory. Although the design of variance-constrained control systems is
well studied,only few contributions have been given to exploiting the extra freedom that it
leaves to the designer. For example ,much of the variance-constrained control literature focus-
es on the steady-state behaviors and robustness,but the transient properties such as regional
pole assignment and disturbance rejection property such as He norm constraints are seldom
considered. To this end ,this paper will introduce purely algebraic approaches which deal with
the problem of controller design with multiple performance objectives including steady-state
variance constraints,robustness to parameter uncertainty,regional pole assignment and H.
norm constraint on the disturbance transfer matrix.

In the present paper,two different problems are considered respectively, The first is how
to design state feedback controller which can achieve a specified state covariance upper
bound,such that the H.. norm constraint and the steady-state variance constraint can be si-

multaneously satisfied,and such that the closed-loop poles lie within a specified circular re-
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gion. The aim of the second problem is to find the robust controller, for linear continuous
system with unstructured parameter uncertainties ,such that the closed-loop system simulta-
neously satisfies the prespecified circular pole and individual variance constraints. Algebraic
approaches are developed to solve the multiobjective design problem addressed in the present
paper.
2  Problem Formulation and Preliminaries
Consider the following linear stochastic continuous certain and uncertain systems respec-
tively described by
i) = Ax(t) + Bu(@®) + Dw(@),y(t) = Cz () 2.1
and
(@) = (A + AA)x (@) + Bu@) + Dw(t) (2.2)
where z(2) € R',u(t) € Rw,w(®) € Rw,y() € R and A,B,D,C are constant matrices
with appropriate dimensions and DD > 0.w(¢) is a zero mean white noise process with co-
variance I, and w(z) and 2(0) are uncorrelated. The pairs (4,B) and (A,D) are assumed to
be controllable. AA(+) represents the system matrix uncertainty which is of the structure AA
— MFN, where M, N are known real constant matrices with appropriate dimensions,and F,

whose elements are Lebesgue measurable,is an unknown matrix function bounded as FFT <
I '
When a state feedback control law u(z) = Gz (¢) is applied to systems (2. 1) and (2. 2),
the closed-loop systems are respectively obtained as
i) = Ax@) + Dw@),A, = A+ BG,y@) = Cx@) (2.3
and
2@) = (A, + A2 () + Dw(®),A, = A + BG. (2.4
Furthermore,for the system (2.1),the closed-loop transfer function H (s) from noise in-
put w(t) to ouput y{z) may be written as H(s) = C(sI — A.)7'D . If the closed-loop systems
(2.3) and (2. 4) are asymptotically stable,then the steady-state covariances of systems (2.
3) and (2. 4) ,which are defined as X = limE[x(#)2T(¢)]. exist and satisfy the following con-

t—o0

tinuous Lyapunov equations respectively
AX + XAl 4+ DDT = 0, 2.5
(A, + ADX + X (A, + AAT 4+ DD™ = 0. (2.6)

We further consider a circular region D(g,7) in the left half complex plane with the cen-
ter at — g + jO(g > 0) and the radius 7(» < ¢) for the continuous systems. Now,We are in a
position to formulate the problems under study as follows.

1) H.. norm,circular pole and variance-constrained controller design problem(denoted as
problem A):For the certain system (2.1) ,determine the state-feedback gain, G, such that:
A1)The H.. norm of the disturbance transfer matrix H (s) from w(2) to y(¢) meets the con-
straint || H(s) || oo <wv,where | H(G) || o = swtelgomx[H(jw)] and o,.,[ * ] denotes the largest

singular value of [ + J;and v is a given positive constant; A2) The closed-loop poles are con-
strained to lie within the circular region D(g,7) ,i.e. , 0(A,) C D(q,r) ;A3) The individual
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state variance constraints are statisfied,i.e. , [X]i <Co?,i = 1,2, 5, where [X |:is theith
diagonal element of X, and 0;(i =1,2,+*,n,) denotes the root-mean-squared value constraint
for the variance of system state.

2) Robust circular pole and variance-constrained controller design problem (denoted as
problem B):For the uncertain system (2. 2) ;seek the controller G such that :B1) The closed-
loop poles are situated within the specified circle (i. e. 0(A, + AA) C D{(q,r)) for all admissi-
ble uncertainties;B2) The same as requirement A3).

3 Solution to the Problem A

Theorem 3.1 Given a constant v > 0 and circular region D(q,r). Then the require-

ments A1) and A2) are satisfied if the following matrix equation

AQAT + (¢ — ™Q + q(A.Q + QAT + v *QC"CQ + DD™) =0 3.1
has a positive definite solution Q. Furthermore,in this case,the steady-state covariance X ex-
ists and satisfies X < Q. (For the proof see Appendix A. )

Remark 3.1 By using Theorem 3. 1,we can assign a desired value to the positive defi-
nite matrix Q, such that this matrix Q meets [Q]:; << o, = 1,2,+-,n,, and find the set of
feedback controller G which satisfies (3. 1) for the specified Q. If such a controller exists and
can be obtained,then from Theorem 3. 1,we will have [ X |; < [QJ: <L o%,i = 1,2, ,n,,and

| H(s) || o < v and 0(A,) C D(q,r). Therefore,the design task will be accomplished,and
the problem A can be converted to such an auxiliart“ Q -matrix assignment”problem.

To make the problem more tractable,we give the following definition and some lemmas
which are useful in the proof of main theorems.

Definition 3.1 Given a desired positive constant vand a desired circular region D(q,7).
LetQ be a prespecified positive definite matrix which meets [Q]; < 6%,7 = 1,2,++,n,. Then
Q is called a v-D- assignable matrix if there exists a set of controller G such that the equation
(3. 1) has the positive definite solution Q.

Lemma 3. 1% Let M € B"*"and N € R"™*(m < p). There exists a matrix V which si-
multaneously satisfies N = MV ,VV" = I'if and only if MM"™ = NN". In this case,a general

solution for V can be expressed as
I
= VM[ S}VITV’ U e R, UUT =1,
0

where V,,and Vy come from the singular value decomposition of M and N respectively,

Zy O Zy O
M=UM[ v }VL, N:UN[ " ]VI,,
0 0 0 O
and TM:rank(M), UM:UN7 ZM:ZN.

Lemma 3. 200 Given the circular region D{(q,7). The poles of matrix A are located
within D(q,r) if and only if there exists a positive definite solution Q satisfying
AQA™ + (¢* — ™R+ q(AQ +QAH + P =0
where P is an arbitrary positive definite matrix.

Theorem 3.2 A specified positive definite matrix Q satisfying [QJ; << 07, (¢ = 1,2,
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n,) is v-D- assignable,if and only if

7Q — q(v*QC™CQ + DD") =0, (3.2)
(I — BBH[#Q — ¢(v*QCTCQ + DD") — (A + ¢DDQ(A + ¢D)T]d — BB*) = 0.
(3.3)

Proof We can rearrange (3.1) as follows:
(A.Q" + qQ?) (A.QV* + gQ/)T = r*Q — ¢(v*QC"CQ + DD™). (3.4
Consider (3. 4),since its left-hand side is positive semidefinite, Q is required to meet (3. 2).
To prove (3.3),we first define W =7’Q — q(v*QCTCQ + DD™) ,and take the square root of
W.W = TT". From Lemma 3.1, (3. 4) is equivalent to AQY: 4+ gQV* =TV or
BG=TvVQ 't —ql — A (3.5
where V is some orthogonal matrix with dimension 7. Thus,it follows from[9]that,there ex-
ists an orthogonal matrix V such that (3.5) or (3.4) has a solution for G if and only if there
exists an orthogonal matrix V such that (I — BBHYTVQ V2 —ql — A) =0or
(I — BBH)OTV = (I — BB )(A + ¢DQ”* (3.6
holds. It is now clear that the given @ > 0 satisfying [QJ: < of(i = 1,2,°**y7m2) and (3.2) is
v-D- assignable if and only if there exists an orthogonal matrix V satisfying (3. 6),or equiva-
lently ,from Lemma 3. 1,if and only if
[d — BBHT]U — BBHT]" :
= [ — BB (A + ¢DQ V¥ ][U — BBY)(A + ¢DQ VT 3.7
It is not difficult to see that the equation (3.7) is just (3. 3). This proves Theorem 3. 2.
Now , we will parametrize the feedback gain guaranteeing the mixed circular pole, He

norm and variance constraints. We first take the following singular value decompositions:

Zy 0
M={ — BB")T = UMI: i OilVL, (3.8)

Zy O
N = — BB*)(A + ¢HQV* = UN[ oN O}Vﬁ. (3.9

It follows Theorem 3.1 and [[9] that,if the given positive definite matrix Q is v-D-
assignable,,then a general solution of (3.5) is

G=B"(TVQ "V —ql — A+ U+ B*B)Z (3.10)

where Z € R is arbitrary and V is any orthogonal matrix satisfying MV = N, i. e. sequa-

tion (3. 6). By using Lemma 3. 1,the orthogonal matrix V satisfying MV = N can be expressed

as
I O (n —rp )X {n_—rpd
V:VMO UVN’ U g R w7 0"Tu (3.1D

where matrix U is arbitrary orthogonal. Finally ,substituting (3. 11) into (3. 10) yields the fol-
lowing theorem. -
Theorem 3.3 Assume that the given positive definite matrix Q satisfying [Qi < of (i =

1,2,+,n,) is v-D -assignable ,then the set of all controllers that assign this Q is parametrized

as
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a0
G = B* (TVM[O U}V}Q—“Z —ql — A) + 7 — B* BZ, (3.12)

where TT" = r’Q — q(v*QC'CQ + DD") ,Z € R"*"=is arbitrary U € R~ %" ~"% is arbi-
trary orthogonal, M,N,Vy,V are defined in (3. 8) and (3. 9),and r}; = rankM.

To this end,the following result is easily accessible.

Theorem 3.4 Given the desired constant v, the desired circular region D(g,r) and the
individual state variance constraints 6f(i = 1,2,+:*,n,). Assume that a specified positive defi-
nite matrix Q is v-D- assignable,i. e. ,this Q meets [QJ; < /(G = 1,2,++,n,) and (3. 2) (3.
3). Then the solution of the H., norm,circular pole and variance constrained-design problems
can be obtained from(3.12).

4 Solution to the Problem B

In this section,the problem of robust circular pole and variance-constrained controller
design for uncertain systms will be studied using the similar approach proposed in previous
section, but the major results are quite different. The following lemmas play an important
role in the proof of main theorems.

10]

Lemma 4. 1* For arbitrary positive constant & > 0 and arbitrary positive definite ma-

trix I ,we have
(A, + AAYP + P(A. + AA)T < e MM" + ¢7'PNTNP + AP + PA™. 4.1

Lemma 4. 2" Suppose that there exist positive scalar €, > 0 and positive definite ma-

trix P > 0 such that e, NPNT < I, Then
(A, + DAYP(A + DAT
< APAT + A, PN ('] — NPN")"'NPAT + ¢ 'MM". 4.2)

With the lemmas provided above,we present the following theorem which plays a main
key for solving the Problem B.

Theorem 4.1 Consider the uncertain closed-loop system(2. 2). Let the desired circular
region D(g,r) and the controller G be given. If there exist positive scalars ¢, > 0,€, > 0 and
positive definite matrix P satisfying

q(A.P + PAD + ARAT + H =0 (4.3)
where
R =P + PN (e;'I — NPNT™)"!NP,
H =(q* — 7" )P + qe7'PNTNP + (&;' + qe, )MM* + ¢DD7,
then the requirement (B1) is satisfied. Furthermore,in this case,the steady-state covariance
X exists and meets X <{ P . (For the proof see Appendix B.)

Definition 4. 1 Let the positive definite matrix P > 0 satisfy [P ]; <<o?(G =1,2,+",n,).
If there exists a feedback gain G meeting (4. 3) for the prespecified matrix P >> 0, this positive
definite matrix P is called a RD-assignable matrix.

Remark 4.1 By using Theorem 4. 1,we can assign a desired value to the positive defi-
nite matrix P such that [P]; << ¢?( = 1,2, ,n,). If this matrix P is RD-assignable,then
from Theorem 4. 1,we will have [X 7, < [PJ, <o?(i =1,2,+,n,) and 6(A, + AA) C D(q,
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7) ,and therefore the problem B will be solved. Such an auxiliary “ P- matrix assignment 2
problem consists of two parts: 1) find the conditon for the existence of RD-assignable matrix
P > 0 ,and 2) find the set of all controllers achieving the RD-assignable matrix P > 0.
Now ,in the key Theorem 4. 1,the equation (4. 3) can be rewritten as follows
(A,RY* 4 gPR™V*)(A.RV* 4+ qPRY")" = ¢*PR™'P — H. (4. 4)
Note that the important equation (4. 4) is very similar to (3. 4),we can solve Problem B
in a manner dealing with Problem A. In this case,we will simply summarize main results of
this section without delailed proofs in order to aviod duplicating previous section.
Theorem 4.2 A specified positive definite matrix P satisfying [P J; <<of (i = 1,2, ,n,)
is RD-assignable if and only if there exist scalar parameters & > 0 and & > 0 such that
e,NPNT < I, ¢'PR™'P—H >0, (4.5)
(I — BB*)(qPA" 4+ gAP + ARA™ + HY(I — BB") = 0, (4.6)
where R, H are defined in Thorem 4. 1.
Theorem 4.3 Supposed that the given positive definite matrix P satisfying [Pl < otd

= 1,2, ,n,) is RD-assignable,then all controllers that assign this P’ can be expressed as
I o0
G = B* (JVK[O U}V{R"”Z —qPR'— A)+ U — BY B)Z 4.7

where TTT = ¢*PR™'P — H,U € P’ "® """ is arbitrary orthogonal, rx = rankK,Z €

Jim e is arbitrary, K, L,V i,V are defined in following singular value decompositions:

K= {U— BB")J = UK[ 0 O}V{-,

Z, 07 .
L= (I — BB*)(gPR™' + A)RV? = UL\: OL O}V},

Theorem 4. 4 Given the desired circular region D{(g,7) and the individual state variance
constraints 6¢(i = 1,2, ,n,). Assume that a specified positive definite matrix P satisfying
[P, <L ol(i =1,2,,n,) is RD-assignable. Then the solution to the problem of mixed ro-
bust control design with circular pole and variance constraints can be obtained from(4. 7).
5 Discussion on Numerical Algorithms and Examples

In the design of practical control systems,we are usually required to construct a v-D-
assignable matrix @ satisfying variance constraints and (3. 2) from the assignability condition
(3. 3) in the case of solving Problem A,or construct a RD-assignable matrix P satisfying
variance constraints and (4. 5) from the assignability condition (4. 6) in the case of solving
Problem B,and then obtain the desired controllers from (3.12) and (4. 7) immediately. No-
tice that the equations (3. 3)and (4. 6) are actually generalized algebraic Riccati equations
which also appeared in Chang and Chung' and Skelton and Iwasaki' with a similar form,we
can solve them by using the same method proposed in [6,7 Jwhich is suitable for relatively
lower order models. For the relatively higher order model, a possible approach to solving the
nonlinear programming problems (3. 2) (3. 3) and (4. 5) (4. 6) is to exploit the iterative nu-
merical search method® %,

The numerical examples are provided in Appendix C to show the usefulness and applica-
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bility of the present approaches.

© Conclusions

This paper has shown how to design variance-constrained state-feedback control systems

which satisfy multiple performance requirements such as transient property,H.. disturbance

attenuation behaviour and robustness. Based on the singular value decomposition technique

and the generalized inverse theory, sufficient conditions for the existence of desired con-

trollers and the set of solutions have been introduced. Though the results developed in the

present paper are restricted to linear continuous systms with constant gain state feedback,it

is not difficult to extend the theory to discrete-time systems and the dynamic output feed-

back. This results will appear at later date.
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Appendix A
Proof of Theorem 3. 1.
The proof of the conclusion 6(A,) C D(q,) follows from Lemma 3. 2 immediately. Next, (3. 1) can be

rewritten as follows

AQ + QAT + v *QC'CQ + DD" + 3 =0 (A1)

Where 3 = ¢ 1[A.QAT + (¢¢ — Q). Since = > 0, the proof of || H(s) || .. <{ v can be completed by a stan-
dard manipulation of (A1) :for detail see Lemma 1 of[147. Finally ,subtract (2. 5) from (A1) to obtain



CONTROL THEORY AND APPLICATIONS Vol. 15

AQ — X) + (@ — XA + v *QC'CQ + X = 0. (A2)
Because A, is asymptotically stable and v 'QCTCQ 4 3 > 0, (A2) is then equivalent to
Q— X = [Ten[uQUTCQ + ZJetitde > 0 (A3)
0
and X < Q follows immediately. This proves Theorem 3. 1.

Appendix B
Proof of Theorem 4. 1.

From Lemma 4.1 and Lemma 4. 2,we have the the following inequalities

0L ¥, = MM" + e7'PN'NP + AP + PAT — (A + AA)P — P(A + AA)T, (B1)
0L ¥, =APAT + A PN" ('] — NPNTYINPA! + ¢ *MM"
— (A, + AAPA + DD (B2)

By using (B1) and (B2), (4. 3) can be rewritten as
(A, + AAP(A. + AAT + (g2 — P
4 q[(A. + BAYP + P(A, + AAYT] + q¥, + ¥, + ¢DD" = 0. (B3)
Since ¢¥, + ¥, + ¢DD" > 0, it follows from Lemma 3. 2 that (A, + AA) C D(q,r). Now,we define
v,, = ¢ ' [(A + AAP(A, + DA (¢ — r)p + ¥, + ¥, ] =0

and (B3) can be rearranged as

(A, + AAYP + P(A, + AA)T 4+ DD"\Y% + ¥, = 0. (BD)
Subtract (2.6) from (B4) to obtain ;
(A‘.+AA)(P*X)+(P—X)(A(+AA)T+W3=0 (B5)

which is equivalent to

a+ame

P—X= jwe(“‘c“’”“?ge dt =0 (B6)

0
and the inequality X < P follows directly. The proof of Theorem 4.1 is completed.
Appendix C
Tlustrative Examples.

Example 1 Consider linear stochastic continuous system (2. 1) with parameters

— 4 0 0 0 0 0.2
A= 0 -3 1|, B=1]1 0|, D=]o0 |, C=1
0 0 1 0 1 0

The performance requirements on Problem A are as follows:
IHG | .<0.8, [X]n<0.6, [X]<1.3, [XJs<6.1, D(g,r) = DG@,2).
It is assumed that the positive definite matrix @ is of the form Q = [g:]Gsj=1,2,3), the condition (3.
3) means that 4 ¢, — 3(0. 8 %g} + 0.04) — gy, = 0, therefore ¢,, =0. 5971. Furthermore ,subject to the pre-
scribed performance requirements and (3. 2),we can choose an appropriate v-D- assignable matrix @ and ob-
tain the related controller from (3.12) as:
0.5971 0.0083 0.0042
Q = |0.0083 1.2473 0.0125|, G = \:
0.0042 0.0125 5.7832
Finally ,we can easily obtain || H(s) || . = 0. 6125,[X ]y, = 0.005,[ X 1z = 0.00012,[X J;; = 0. 00009,
and colsed-loop poles —4. 00001, —4. 99881, — 1. 00018, It is clear that these results satisfy fhe respecified

0.0115  — 4.9982 — O, 0182}
. 0.0028 — 0.1258 — 1.00064

constraints.
Example 2 Consider the linear uncertain system (2. 2). The parametersA,B,D are the same as those in

example 1,and the uncertainty is assumed to be AA = MFN = (0. 5I,) (sinal3) (0. 515) and the performance
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requirements on Problem B are defined as follows
(X)) <1.025, [XJp<4.327, [Xs<<0.918, o(A, + AA) C D(g,r) = D(4,3.6).
Suppose that the positive definite matrix P has the form P = [p;;](i,j = 1,2,3). Substituting P into e-
quation (4. 6),and considering the inequality constraints (4. 5) and the desired performance requirements,we
can construct a RD-assignable matrix P and the related scalar parameters €, ,¢, as
0. 9804 — 1. 8966 0.00255
P = |—1.8966 3. 9045 0.0123 |, ¢& = 1.1624, & = 0.25.
0. 00255 0.0123 0. 8365
Using the results provided in previous section,we can easily get
G — I' 0. 0126 - 5.0184 — 0.01 '|ﬁ:|.
L— 0. 0167 — 0.2076 — 0.9936

It is not difficult to test that the prespecified requirement constraints of example 2 are satisfied.
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