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The Solving of Riccati Equations for Large-Scale
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Abstract: This paper discusses the solving of the algebraic Riccati equations and the Lyapunov
matrix equations for large-scale systems with symmetric circulant structure. It is shown that the

solving of the algebraic Riccati equations and the Lyapunov matrix equations for such a system can

be simplified by solving % 41 independent equations of dimension N times smaller than the origi-

nal equations. As an application,the problems of the linear quadratic optimal control and the robust
linear quadratic optimal control for such a system can also be simplified.
Key words: large-scale systems; symmetric circulant structure; Riccati equation; linear

quadratic optimal control; robust control

7 Introduction

Many control problems are concerned with the solving of the algebraic Riccati equations
and the Lyapunov matrix equations. Generally speaking ,the higher the dimensions of the sys-
tems are,the more difficult the solving of such equations will be. But,for a special class of
large-scale systems,we can use-the special structure of the systems to simplify the problems.

In this paper,we study large-scale systems with symmetric circulant structure. Such sys-
tems are common in practice and include paper machines,distribution networks,coating pro-
cesses,and systems consisting of units operating in parallel. Many industrial examples were
given in[1]and the references therein. This type of systems also arise in lumped approxima-
tions to partial differential equationst™.

Large-scale systems with symmetric circulant structure have been dealt with in several
papers. For example, Brockett and Willemst? studied the controllability, observability and
stability of such systems. Hovd and Skogestad™ studied the H, and H.. control of such sys-
tems.

This paper is organized as follows. In Section 2, the model of large-scale systems with
symmetric circulant structure is given. In Section 3,the methods of solving the algebraic Ric-
cati equations and the Lyapunov matrix equations are presented. In Section 4,the problems of
the linear quadratic quadratic optimal control and the robust linear quadratic optimal
control are studied. Section 5 gives an illustrative example.

2 System Description

Before describing the systems,the definition of block symmetric circulant matrix is need-
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ed.
Definition 2.1 A matrix C € R

Nxtr s called bolck criculant if C has the following

structure
G C, G D4R INICH
5 Cy C Cp = Cy
B C, C, e C
where C; € R™*#(i = 1,0+ ,N). fC, = Cy_i+2G = 2,***,N), then the matrix Cis called block
symmetric circulant,and denoted by scl [C,,C;,+*+,Cwn].

Denote m; = [1 v, v} = oY ']%,j = 1,2,++,N, where v; = exp(2n(j — 1),

v—1/N),j=1,2,++,N,i.e,v;is a root of the equation oM = 1.

Let Ry = —«/%I:rl Yz rN]With 8! S nmy, = [1 1} e 1:|T,r%+l= m%HifN is an
1 v—1
even number, 7, = /—_Z_(m, T+ Myga ) s TNy = —/—T(MP — Mnga—p)s (P = 253500440),
where t = J—V—;——l if Nis odd and ¢ = %if N is even.

Then Ry is a real orthogonal matrix,and the following result holds™. -

Lemma 2.1 Let C = scl[C,C, -+ CyJwith C; € R"™**( = 1,+*,N). ThenC, = (Ry X
I)'C(Ry ®I,) = diag[C, Cuy+++ Cuv]is a block diagonal matrix,and Cs = Cawso—i (@ = 2,
3, ,¢), where X) denotes the Kronecker product,and I, denotes a ¢ X ¢ identity matrix.

The relation between (Cyy Cypoer Cyy) and (C, Cyese Cy) is:

Cdl ( .l I-(-'] -L.dl
C c C 1 C

:”’Z = (VNFy® L) : , EZ =ﬁ<FN®Im> E“
Cun Ci G Can

WhereFH=ﬁ[m1 my, e omy .

Consider a class of large-scale systems composed of N subsystems,each of which is de-

scribed by

N
# = Az; + Bu; + >, Dyx;, i=1,+,N
J=1
where x;,u; are the n-,m-dimensional vectors of the subsystem states,control inputs,respec-

tively.
We further assume that
D = (D;)) = scl[D,,D,,++,Dy]. (D
Then ths state-space model of the overall system is
& = Axr + Bu 2)

where x = (x], -+, x8) yu = (ul,-++,uy) and

A =scl[A + D,,D,,++,Dy] =scl[A,,A;,+, Ay ],
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B =diag[B,-,B].
We shall hereafter refer to the system (2) as a large-scale system with symmetric circu-
lant structure.
In the following of this paper,we denote T; = Ry & I;, and denote
{ A, =T AT, = diag[An,Aup A ],

B, =T;'BT, = B = diag[B,B,+,B]. (3
Let £ denote the number of distinct matrices among Ag »Auz, ", Ay, Obviously, 2 = %
+ 1if Nis even;and £ = N—Z—i—_—l if N is odd.

From (3) we can easily get the following fundamental results for the system (2) which
were given in[2].

Theorem 2.1 System (2) is completely controllable (c. c. ) if and only if the pairs {A4,,,
B}(G =1,++,k)are all c.c.

Theorem 2.2 System (2) is asymptotically stable if and only if A;(G = 1,++,k) are all
asymptotically stable.i.e. 0(4A) C C™ =0(Ay;) C C7 ¢ = 1,k where 0(A) denotes the
spectrum of matrix A ,and C~ denotes the open left half plane.

3 The Solving of Riccati and Lyapunov Equations

In this section,we will show that we can construct the solutions of the algebraic Riccati
equations and the Lyapunov matrix equations for the system (2) from solving corresponding
equations for considerably lower order systems. The following results provide the details of
these construction.

Theorem 3.1 Suppose the system (2) is ¢.c. and symmetric and positive definite ma-
trices Py, € R""({ = 1,++,£) are the solutions of the Riccati equations

%P4+ PyAsy — PuBR{'B™P;; + Q, =0, i=1,,k, 4
respectively ,where Q, € R"™",R, € R"*" are arbitrarily selected symmetric and positive defi-
nite matrices. Then the unique symmetric and positive definite solution P of the Riccati equa-
tion for the system (2),i.e. -
AP + PA — PBR™'B'"P + Q = 0. (5)

where Q = diag[Q,,+*,Q,] and R = diag[R;,***, R, ], has the structure
P = scl[P,,P;,**,Pn] (6
where
P 2,
i i ﬁ(h@h) f;'” 0
Py Puy

Proof Denote P, = diag[ Py sPuys** s Pan], where Py = Pyyig—p fori =k +1,:,N,
From (4) we have
A}P, + P,A, — P,B,R'BjP, + Q = 0. (8)
Multiply (8) on the left by T', and on the right by ;! = T to obtain;:
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7. AT T, P. T + TARE T ALY
— 7P, I, BT, RT, T, BIT,\T,P,T;" + T,QT," = 0.
That is
AP + PA— PBR'B'"P +Q=0.
Now we have demonstrated that P is a solution of (5). Since system (2) is c. c. ,the equation
(5) has unique symmetric and positive definite solution P. The proof is completed.
Similarly, the solution of the Lyapunov matrix equation for large-scale systems with
symmetric circulant stricture can also be obtained from solving corresponding equations of
much lower order,as given in the following result.
Theorem 3.2 Suppose 0 (A;) C C™,i = 1,2,*+,k and symmetric and positive definite
matrices Py € R""( = 1,++,k) are the solutions of the Lyapunov matrix equations
ALPy 4 Puly + Q= 0, i=1,,k,
respectively , where Q, € R"™" is arbitrarily selected symmetric and positive definite matrix.
Then the unique symmetric and positive definite solution P of the Lyapunov equation for the
system (2),1.e.
ATP+PA+ Q=0
where Q = diag[Q,,+-*,Q; ], has the structure (6) and (7).

’

- k
Proof Noting that 6(A) = Jo(Au), the proof is similar with that of Theorem 3. 1 and
i=1

is omitted here.

Remark 1 In the special case when D, = D; = ++ = Dy in (1). The systems (2) be-
comes the system considered in [3]. So the Theorem 3.1 and Theorem 3. 2 in this paper are
the generalization of the corresponding results in [3]. Moreover,the proof of Theorem 3.1 is
different from that of Theorem 1 in[3]. In fact ,our method could be used in the proof of The-
orem 1 in[ 3] and will shorten the proof.

4  Linear Quadratic Optimal Control
In this section,we consider the linear quadratic optimal control of the system (2).

Suppose the performance index to be minimized is
J = j e[ ()TQx () + u(t)TRu()]ds

where the weighting matrices Q = diag{Q,,**,Q,],R = diag[R,,++-,R,;] and Q, € R"™*" and
R, € ™" are assumed to be positive definite,and the real number ais used to prescribe the
degree of stability.

From the well-known result of linear quadratic optimal control and Theorem 3. 1, the
following conclusion can be easily obtained.

Theorem 4.1 Suppose the system (2) is c.c. and symmetric and positive definite ma-
trices Py € R"™"(i = 1,++,k) are the solutions of the Riccati equations

(Ag + aI)TPdi + Pu(Ay + o) — Pd,-BRl_lBTPdi +Q, =0, i=1,k,
respectively. Let matrix P be given by (6) and (7) ,then the state feedback control
u(t)y =— R™'BT™Px(t) (9
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minimized J and the closed-loop system & = (A — BR'B"P)x is asymptoically stable.
Now we consider the robustnes of he controller given by (9).
Suppose the system is expressed by differential equation of the form
@ = Az + Bu + fo(z@®),u(®),t,6) |
where fo(x (@) ,u(t),t,0) is the nonlinear perturbation, & is uncerta{inty vector.
The resulting closed-loop system becomes
¢ = (A — BRT'B"P)x + f(x(@),t,0) 10)
where f(x(2),t,0) = folx @), — R'B"Px(t),t,0).
About the stability of the closed-loop system (10),we have the following result,
Theorem 4.2 Denote
D! = (Ay + a)'Py + Pu(Ag + al) + 2Q,, i =1,,k,
and
min 'Llljla(D,»“ )

M= Iy + a
2max Jo(Py)
i=1

min Ja(P,)
i=1

- .
max Jo(Ps)

i=1
I || flxsts® || < pll x| ,then the closeti-loop system (10) is robust stable.

The proof of Theorem 4. 2 will use the following lemma which was given by Patel et.
gl EETs

Lemma 4.1 Denote

D = (A+aD)'™P £ P(A+al) + 2Q
where P is given by (6) and (7),and denote
mina(D*?) mino(P)

o= omaxo(P) | ¢ maxa(P)
I | flx,t,® || < |l x|l » then the closed-loop system (10) is robust stable.
Proof of Theorem 4.2 It is easy to see that: T, 'PT, = diag [Pu+Pass+*,Pay] and
T.'D*T, = diag[ Dy ,D; ,+++,D} ] where D} = D¢y, pfor i = % + 1,-,N,hence o(P)

:'.CJ]U(Pdi) ya(D*) =IL_kJG(D,<‘) ,50 we have 4 = g,. From Lemma 4. 1,the proof is complet-
ed.

Remark 2 All the results in this paper can be extended to the more generalﬂ case in
which the matrix Bin (2) is block symmetric circulant. Since the conclusions are similar the
details are omitted. Moreover,because the methods used in this paper are somewhat general,
the matrices A and B in (2) needn’t be block symmetric circulant. In fact,as long as there ex-
ist an orthogonal matrix Ry € RY*¥ such that 7';! AT, and T;' BT,, are all block diagonal
where T; = Ry &) I;, all the results in this paper will keep true.

5 Illustrative Example
Consider the system described by (2),where N =4,n = 2,m =1,

0 3 0 0 0 0o —1
A= , B= , Dlngz[ :|, D,=D, = .
—2 0 1 0 0 1 0

By computing directly ,we have



CONTROL THEORY AND APPLICATIONS Vol. 15

0 3} A_A_[o —1] A_[o 0]
A= {—-2 oLl A T S S P - G DA

0 1 0 3 0 5
Adlz[o 0 , Ap = Ay = _ 0’ Ap = 4 0—

Since the pairs {A4, B} = 1,2,3) are all c.c. ,from Theorem 2. 1,the pair {A,B}is c.c..
Let R, = 1,Q, = I, solving the following three 2-dimensional Riccati equations

AYPy + PuAyu — P,BR;'B"P; +Q, =0, i= 1,2,3,
we have

1.732 1 1.159 0.236 1.232 0.123
P,y = v P = y Pa= .
1 1.732 0.236 1.554 0.123 1.494

From (7),we have

p, —Lat Pa + 2Py _ [1. 32 0. 399],
4 0.399 1.584
P, =P, = Q—I_"rs - [Z ;iz 0(; 20169],
P, _ Py + Pss — 2Pu _ [0. 162 0.163]
' 4 0.163 0.029

Thus ,from Theorem 3. 1,the solution of the Riccati equation
AP + PA— PBR'B'P+Q =0
where R = I,,Q = I, ,is
P =scl[P,,P,,P;,P,]

r1.32 0.399 0.125 0.219 0.162 0.163 0.125 0.219
0.399 1.584 0.219 0.06 0.163 0.029 O. 219 0.06
0.125 0.219 1.32 0.399 0.125 0.219 0.162 0.163
0.219 0.06 0.399 1.584 0.219 0.06 0.163 0.029
0.162 0.163 0.125 0.219 1.32 0.399 0. 125 0.219|
0 0
0

163 0.029 0.219 0.06 0.399 1.584 0.219 O. 06
125 0.219 0.162 0.163 0.125 0.219 1.32 0. 399
0.219 0.06 0.163 0.029 0.219 0.06 0.399 1.584
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EFMRBEB I EMBI KRS Riceati FRH KR
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