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Abstract: A reinforcement learning (RL) system interacts with an unrestricted, unknown en-
vironment. Its goal is to maximize cumulative rewards, to be obtained throughout its limited, un-
known lifetime. One of difficulties for a RL system is that reward signal is sparse, specially for RL
system with very delayed rewards. In this paper, we describe an algorithm based on a model of the
state’s uncertainty estimate. It uses efficiently reward information stored in value function. The
experiments show that the algorithm has a very good performance.
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1 Introduction

In Reinforcement learning (RL) scenario, the agent must choose an output to generate
in response to each input. The reinforcement signal (reward) it receives indicates only how
successful that output was; it carries no information about how successful other outputs
might have been. RL has been studied extensively and its properties are well known, seen in
[1, 2], It has been shown also to perform well in Markov domains, such as [3~7].

The RL is difficulty for reward signal is sparse and often very delayed. As a quality sig-
nal, reward carries less information about environment. A very important issue in RL is effi-
cient use of reward. Rewards are generally stored in form of value function, for example Q-
value. The algorithm proposed in this paper takes use of Q-value to estimate state’s uncer-
tainty and then uses this estimate to modify Q-value. The algorithm is compared with Q-
learning'™ and SCIQ-learning'™ in empirical trials and is shown to have very good perfor-
mance,

2 State’s Uncertainty Estimate with Pseudo-Entropy
2.1 Reinforcement Learning

The general RL problem is typically stated as finding a policy that maximizes expected
discounted future reinforcement. A policy = is a mapping from S (a state space) to A; (a set
of action in state 7 ). The evaluation function maintains an estimate, V., of optimal value
function in each state i. It is updated as follows:

Vil — )V, + a(r + 7V ) o))
where 7 is the actual reinforcement value received for taking action % in state 7, j is the next

state, @, 0 <Ta <1, is a learning rate, and 7 is a discounted factor.
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Q-learning stores and updates the espected discounted reinforcement estimates, called
Q-values, for each state-action pair. The agent’s policy is to choose the action with the max-
imal Q-value available from the current state. Let Q;, be the expected discounted reinforce-
ment for taking action 4 in state 7 and continuing thereafter with the optimal policy. The Q-

values are updated as follows:

Q;,k‘_(l ot Q’)Q.',k + a(r + ygleaj{.Qj'kl)' 2

Given the Q-values, there is a policy defined by taking, in any state: , the action k that
maximizes Q;,,. It is called the greedy policy. For the sake of exploration, one can choose ac-
tions randomly according to the Boltzmann distribution. Both policies are used in this work.
2.2 State’s Uncertainty Estimate

The basis of RL is a class of stochastic optimal control problems called Markov decision
problems (MDP). A MDP is defined in terms of a discrete-time stochastic dynamic system
with finite state set.S = {1,+*+,n}. At each time step, a controller observes the system’s cur-
rent state and selects an action, which is executed by being applied as input to the system. If
i is the observed state, then the action is selected from a finite set A; of admissible actions.
When the controller executes action £ € A;, the system’s state at the next time step will be j
with state-transition probability P;;(£). The application of action % in state 7 at time ¢ incurs
an immediate reward r(z).

In information theory seen in [8], the entropy is a measure of uncertainty of a random
variable. Let X be discrete random variable with alphabet X and probability mass function
p(x) = Pr{X = z},x € X. The entropy H(X) of a discrete random variable X is defined by

H(X) =— > pla)logp(a). (3)

z€X
The maximum value of the entropy is achieved when all p(x) ’s are equal, the minimum

when one of p(x) ’sis 1, and 0 log 0=0 is easily justified by continuity since = log z — 0 as
x—> 0.
For the MDP, the maximun-likelihood estimate of state-transition probabilities needs
extra memory. So we propose to use Q-values for this estimate as follows:
5O = Q[ X Q. @
In fact, this is not a real probability estimate. We will see in the following that the pur-
pose is just to take use of it for pseudo-entropy estimate of a state.

Then we define pseudo-entropy estimate (PEE) of the state 7 at time ¢ using % (¢) de-

scribed in (4) as follows:

H'G@) =— > phlog (BY()) (5)
i=1

where m is the number of the actions available in state : .
We take in the state i the PEE of the following state jas a bias of the value V;of the state
J» since we think that the really achieved value of state j depends on its certainty. So we pro-

pose the following updating rule associated to Q-learning;

Q= = Qi + alr + Y maxQ,w — H(). (6)
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H () is used in (6 since bigger is the uncertainty of the state j , smaller is the cer-
tainty of taking the maximum benefice from this state. This algorithm is noted PEQ-learning
because the pseudo-entropy estimate is combined with Q-learning.

3 Simulations
3.1 Pole Balancing Problem

The pole balancing problem (Fig. 1)
is token for examining the proposed rein-
forcement algorithm. The objective is to
learn to push the cart left or right so as to

keep the pole balanced more or less verti-

cal above the cart, and also to keep the

!

cart from colliding with the ends of track.
The learner has access to the state vector
(z,%,0,0) at each time step and can se- Fig.1 Pole balancing system

lect ont of two actions, a rightward or leftward force on the cart. If the pole falls over more
than 12 degrees from vertical, or if the cart hits the track boundary, a failure is said to oc-
cur.

The representation used in experiments is reported as follows

. e D2 :
gsiné, + 00st91[ B lbsing = #(Sgn(x‘)]—' #40:

o m, +m ml
61 - l[i B mcoszﬁ,} ¥ (7)
3 m, +m
i = F, + ml[#sind, — 9,cost9[] — usgn(x,) , 8
m, -+ m

where the parameters are the same as used in [3]. All rewards are zero except upon failure,
when a reward of negative one is delivered.
A series of runs are carried out, where each run consists of a sequence of trials. Each

trial is terminated when a failure occurs. Each run consists of a number of trials until the
X 10°

system remains balanced for more than 100000 2 e R
time steps, in which case the run is . i
terminated. The learning rate a = 0.2 is gl-ﬁ' E
picked that seemed to give the best result. E Lol E
The discounted factor, 7, is set to 0. 95 for % ’J:
both methods. ;g 0.8 ;:r |
Fig. 2 shows the accumulated time steps S 0.4 4
measured against the number of the failures g =
(trials) for PEQ-learning and Q-learning. It 00 4'0 ' éo . 1'20 fGO 0
is the average of 5 runs. In terms of the accu- nubmer of failures

mulated time steps until failure, PEQ-learning Fig.2 PEQ and Q learning systems,measured

achieves a higher level of performance than Q- against the number of the failures
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learning.
3.2 A MDP Example

A MDP with 5 states and 3 actions is taken as an example. The arrays of transition
probabilities and rewards are described in detail seen in [5]. The relative frequency coeffi-

cient is defined to be

fr@o =2, 9

which gives the average number of optimal decisions made before time ¢, where »; is the
number of times the optimal action was taken in state 7.

SCIQ is an algorithm proposed in [6]. The experiment is a comparison between PEQ
and Q, PEQ and SCIQ. Fig. 3 shows the evolution of the relative frequency coefficient,
f* (@), defined by (9). Each graph is the average of hundred simulation experiments, Each
experiment consists of six thousand control actions. The graphs in Fig. 3 show that, in this
learning task, the PEQ achieves a higher level of performance after a given number of control

actions than Q-learning and a slightly better than SCIQ.
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Fig. 3 Graphs of f* (¢),for PEQ(solid line)and Q,SCIQ (dashed line).

4 Conclusion

The algorithm proposed here, called PEQ-learning, is of interest because of being a new
idea for an agent to explore in RL environment, although the entropy is not a new definition.
The results of the experiments show that for the learning tasks simulated in this work,
PEQ-learning achieves a higher level of performance than Q-learning. There exists still the
great possibility to develop significantly PEQ-learning. Our future work will be focused on
finding more efficient formulation with pseudo-entropy estimate for RL, and then use it to

more difficult learning tasks.
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