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Abstract: This paper presents a simultaneous H;/H.. optimal control problem for discrete-
time systems in the state-feedback case. By the use of dynamic state feedback controllers,the de-
sign seeks to minimize the H, norm of a closed-loop transfer matrix while simultaneously satisfying
a prescribed He. norm bound on some other closed-loop transfer matrix. The class of problems ad-
dressed here is relatively general and consists of systems which have left invertible transfer func-
tion matrix from the control input to the controlled output. Necessary and sufficient conditions are
established so that the posed simultaneous H;/H.. problem is solvable with state feedback con-
trollers.
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1 Introduction

In multivariable control theory,optimization of a nominal performance measure with ro-
bust stability is becoming a standard mode operation. H;-norm is found to be the most appro-
priate measure in the characterization of nominal performance while the H..-norm is to identi-
fy robustness to unstructured plant uncertainties. H,-norm minimization problems were heav-
ily studied in 1960’s and early 1970’s as Linear Quadratic Gaussian (LQG)optimal control
problems. More recently these problems have been studied in a generalized setting of mini-
mizing the H,-norm of a transfer function matrix from an exogenous disturbance to the con-
trolled output of a given linear time-invariant system by an appropriate selection of an inter-
nally stabilizing controller (see e. g. ,[1Jand[2]). On the other hand,since the seminal work
0f[37],H..-norm optimization problems have been heavily studied,and are continuing to be
developed. In H..-norm optimization,one seeks a control law which stabilizes a given plant,
and also makes the H..-norm of a selected closed-loop transfer function smaller than a priori

glven number. The H.-norm optimization deals with the worst-case objective in contrast
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with the common mean square objective of the traditional LQG (Hz) optim‘al control. Recent-
ly,,problems where both H, and He-norm performance measures are mixed ,have received at-
tention as they show a potential to achieve optimal nominal performance with some robust
stability (see e. g. [4~6]). A typical problem in this connection ,called a simultaneous H,/H.
optimal control problem, has been formulated for continuous-time systems in [6] and later
extended in [7]. This problem seeks to minimize the H,-norm of a closed-loop transfer matrix
while simultaneously satisfying a prescribed He-norm bound on some other closed-loop
transfer matrix. The intent of this paper is to look at the parallel problem in discrete-time
systems. A set of necessary and sufficient conditions under which a simultaneous Hy/He opti-
mal control problem is solvable for a class of singular problems for discrete-time systems are
developed. The class of problems we consider have a left-invertible transfer function matrix
from the control input to controlled output which is used for the H,-norm performance mea-
sure. This class of problems subsumes the class of regular H, optimization problems. The de-
velopment given here for discrete-time systems is analogous to but not quite the same as that
for continuous-time systems in [7]. The differences reflect the specific nature and character-
istics of the discrete-time systems.

This paper is organized as follows. Section 2 gives a clear mathematical statement of the
problem , while Section 3 recalls several pertinent preliminary results. Section 4 develops the
necessary and sufficient conditions under which the posed simultaneous H,/H.. optimal con-
trol problem for discrete-time systems is solvable. Finally,Section 5 draws the conclusions of
our current work.

Throughout this paper ,Ker[ V]and Im [V ] denote respectively the kernel and the image
of V. Also, o (M) denotes the spectral radius of matrix M ,while normrank denotes the rank
of a matrix with entries in the field of rational functions. Given a stable and strictly proper
transfer function G(z) »as usual,its H,-norm is denoted by | G || ,5and given a proper sta-
ble transfer function G(2), its He-norm is denoted by || G |l w. Also, RH’ denotes the set of
real-rational transfer functions which are stable and strictly proper. Similarly s RH.. denotes
the set of real-rational transfer functions which are stable and proper. Finally ,CO and C® de-
note respectively the unit circle and the set of complex numbers outside the unit circle.

2  Problem Statement and Definitions

Consider the following system,
2k + 1) = Ax(k) + Bu(k) + E,w, (k) + Eow. (k)
|y(k) = x (k)

N 2,(k) = Cox(®) + Dk, @w
2 (k) = Cox(k) + Dou(k),s

wherex € R"is the state, u € T is the control input, We € R and w.. € R'~ are the distur-

bance inputs,and z, € R* and z.. € R% are the controlled outputs. Also,consider an arbitrary
proper controller,
u = K()x. 2.2

A controller u = K(2)x s said to be admissible if it provides internal stability of the resulting
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closed-loop system. Let T, (K) denote the closed-loop transfer functions from w, to z; and
from w.. to z.. ,respectively,under the feedback control law « = K(z)x. Moreover,let the in-
fimum of the H, norm of the closed-loop transfer function T, (K) over all the stabilizing prop-
er controllers K(z) be denoted by 7, ;that is,

7y =inf{ || T,(K) || ,/u = K(2)x internally stabilizes 3}. (2.3)
The simultaneous H,/H. optimal control problem is defined as follows:

Definition 2. 1(The simultaneous H;/H.. optimal control problem). For the given plant
S, and a scalar Y>>0, find an admissible controller K (z) such that || T,(K) ||, = 7; and
| Tw(K) || o << 7.

Definition 2. 2 The following definitions will also be convenient in the sequel.

1) (The H; optimal controller) : An admissible controller K(2) is said to be an H, opti-
mal controller if || TL,(K) ||, = 7.

2) (The H., 7- suboptimal controller ): An admissible controller K(z) is said to be an
H.. 7- suboptimal controller if || Tw(K) || o < 7.

3) (Stabilizable weakly unobservable subspace) Given a system 3, characterized by a
matrix quadruple ( A,B,C,D) ,we define the stabilizable weakly unobservable subspace v,
(Z,) as the largest subspace v for which there exists a mapping F such that the following
subspace inclusions are satisfied ;

(A+ BF)»Zvand (C + DF)y = {0},
and such that A + BF |v is asymptotically stable.

Our goal in this paper is to derive a set of necessary and sufficient conditions under
which the simultaneous H,/H.. optimal control problem is solvable. To achieve this,we first,
following [8],parameterize the set of all H, optimal dynamic state feedback controllers for
general singular problems,and then utilize a theorem of [9] which studies the existence con-
ditions for the 7- suboptimal strictly proper controller for discrete-time systems.

3 Preliminaries

In this section, we recall several preliminary results needed to establish the necessary
and sufficient conditions under which the simultaneous H,/H.. optimal control problem is
solvable ,while at the same time we also introduce some new results.

3.1 Review of H,-optimal Control

In this subsection, we recall from [10]the necessary and sufficient conditions under
which an H,-optimal state feedback control law of either static or dynamic type for discrete-
time systems exists. We also recall a recent result of [8Jwhich characterizes all the possible
H, optimal state feedback laws.

The conditions under which an optimal controller exists for the discrete-time system

z(k 4+ 1) = Az (k) + Bu(k) + Eyw,(k),
2,y k) = x(k), , 3.1
2,(k) = Cox(k) 4+ Dyu(k),

¢an be formulated in terms of an auxiliary system 2., constructed from the data of (3.1). The
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auxiliary system Z,,, is as given below:
zp(k + 1) = Azp(k) + Bup(k) + E;w;(k),
E,p:3 yp(k) = xp(k), N (3.2)
zp(k) = Cpap(k) + Dpup(k). '
Here Cp and D; satisfy

CI
F,(Py) = [Dz:l[cp Drl,

where

A'P,A—P,+CiC, A'P,B+ C;Dz} oD

F,(Py): = l:
B'P,A+DC  BP,B+ DD,

and where P, is the largest solution of the matrix inequality F,(P;) 2= 0. It is known that un-

der the condition that( A,B) is stabilizable,such a solution P, exists and is unique.

We have the following theorem.

Theorem 3.1 Consider the given system 2;as in (3. 1) ,and the auxiliary system 2., as
in (3.2). Define a subsystem Sp of S, as that characterized by the quadruple ( A,B,Cp,
D, ). Then, the infimum, 7; , can be attained by a static as well as by a dynamic stabilizing
state feedback controller if and only if the pair( A,B ) is stabilizable and Im(E,) & v, (Zp) .

Proof See[10].

We know that whenever an optimal solution to the original H; problem exists,there ex-
ists a constant gain F such that Ay: = A + BF is stable and that

| (C; 4+ DoF)(=l — Ap)T'E; |l . =73 (3. 4)
or equivalently (see [81),
(Cp + DpF) (2l — A 'E, = 0.
It can be easily shown that any proper dynamic controller K (2) that stabilizes the system 2.

can be written in the following form,

{f(k + 1) = A6k + By, (&), (3.5)
u(k) = Fx(k) + y:(k),
where

y (k) = Q) [xk) — E(b)] (3.6)

for some proper and stable Q(2) ,i.e. , Q(z) € RH..,with appropriate dimensions. The fol-
lowing theorem qualifies Q(2) so that the controller K(2) is H, optimal for the given system
S,

Theorem 3.2 Consider the given system ; as in (3. 1). Let the system characterized by
the matrix quadruple ( A,B,C,,D, ) be left invertible. Also, assume that the pair ( A,B ) is
stabilizable, and that Im ( E,) & v,(Zp) . Define a set Q as,

0: = (Q(2) € RH.|Q() = W) — EES) (2] — Ap),W(z) € RH*}. (3.7
Then a proper dynamic controller K (z) stabilizes 3; and achieves the infimum, 7, , if and on-
ly if K(2) can be written in the form of (3.5) and (3. 6) for some Q(z) € Q. Moreover,if
(AusB.,C, ) is a state space realization of W(2), then Q(2) = W(z)(I — E.Ef) (2] — Ap)
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can be written as,
Qz) = Cu(zl — A '[ALB.(U — EEf) — B, — E,Ef)A;] + C,B, (I — E,E}).
(3.8
Proof It follows from [8].
3.2 Existence of H..-suboptimal Controllers

We recall in this subsection a theorem of [9] which gives a set of necessary and suffi-
cient conditions under which the following auxiliary system has an H.. Y-suboptimal strictly
proper controller,

xz(k + 1) = Ax(k) + Bu(k) + E.w. (&),
Do 1 Y(R) = Crx (k) + Dywo, (k) (3.9
2o (k) = Coox (k) + Dou(k).
For future use,let us define the following matrices. Given any symmetric positive semi-defi-
nite matrices P, € R™” and Q.. € R which satisfy
Ro;=1—EP_E.>0 and Y..= U — Q.P..)"'Q. =0,
we define
Ve: =BP,B+ D.D,.,
A,. =A—BVX(BP.A+ DIC.),
Cp: =C,+ D,REP_A,,
Cop: = (VYO (B P,A+ D!C. + BP_E,R:'ELP,A,),
Dy = D,RZV?,
Dyp = (V¥HT B'PLE.RZ?,
Wp: = DIZPD.lZ;’ + C1PYooC1$=y
Spe =1 — DypDpyp — CopY ouCob + (CopY Cip + Digp D1 )WE (CipY Cop + DippDygh).
Finally ,we define
Dispy: = Sp2(CopY Cib + DypD\) (WHEH ™. (3.10)

We have the following result.

Theorem 3.3 Consider the auxiliary system 3. as in (3. 9). Assume that two systems
one characterized by ( A,B,C.,D.. ) and the other by ( A,E..,C,D) have no invariant zeros
on the unit circle. Then the following statements are equivalent ;

1) There exists a linear,time-invariant and strictly proper dynamic compensator K,(z)
such that when the control law #(z) = K,(z)y(z) is applied to 3,... sthe resulting closed-loop
system is internally stable. Moreover,the H..-norm of the closed-loop transfer function from
the disturbance input w.. to the controlled output 2. is less than 1.

2) There exists symmetric matrices P, == 0 and @., == 0 such that

a) We have R, = I — E.P_E_. > 0.

b) P, satisfies the discrete algebraic Riccati equation

pP,=AP A+ ClC,

BIERAE DL E| A I:B’PmA + D;cw}
[ BPoa }G(Poo) E/P.A , (3.1D
D.D, + B'P.B  BP.E.
where GP): = [ . } (3.12)
E.P.B ELP.E,—I
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¢) Forall z € CO C®,we have

=l — A — B — k.
normrank | B'PoA + Dol B P.B + D.D. B'P..E.
E!'P._A ELP.B E!'P..E. — L

= n + .. + normrank{C. (z — A)7'B+ D, }i*
d) We have Seo: = I — C.Q.CL>0.

) Q.. satisfies the following discrete algebraic Riccati equation

Q.. =AQ.A' + E.EL

_[CR-A" + DlE;] N [CIQwA' + DlE;,]

[ e H@Q.) o QLA ; (3.13)
. ——— [D1D1+01chl C,Q.CL ] L

e =g C..Q.C CIA) (Gl :

f) For all z € COU C®,we have
o] — A AQ.C,+ E.D, AQ.CL
normrank | — C;  CiQuCi + DD, C QL.
— Cw CoQC L@ Ehk—1
— n + g, + normrank{C;(zI — A)E. + Di}.

g) pP(PouQe) < 1.

h) || Daey | << 1,where Dyey is as defined in (3.10) with P and Q.. satisfying the
above conditions a) ~g).

Proof See[9].

4 The Simultaneous H,/H.. Problem

In this section,we give our main result regarding the simultaneous H,/H.. problem. We
have the following theorem.

Theorem 4.1 Consder the given system S as in (2.1). Assume that the pair (A,B)is
stabilizable and the system characterized by the quadruple ( A,B,C,,D,) is left invertible.
Also,assume that the quadruple (A,B,C.,D.) has no invariant on the unit circle. Then
there exists an internally stabilizing control law # = K (2)z such that | T,K|.=7; and I
T..(K) || » <1 if and only if the following conditions hold :

1) Im (E;) Sy, (Cp)s which is equivalent to the fact that there exists an F such that Ar:
— A+ BF is stable and (3. 4) holds. Also, let Cop: = Coo + D F and M., = (1 — E;Ef YEo..

2) There exists symmetric matrices P.>=0and Q. =0 such that

a) We have Re.: =1 — E.P.E. > 0.

b) P.. satisfies the discrete algebraic Riccati equation:

P.= AP A+ CLox

B'P.A+ D.C.. ] N \:B’PwA + D;o‘cw]
—[ ZiP_A G(P..) EIP_A ; (4.1)
. o [D;,Dw + BP.B  BP.E. ] s
where wl)i = . .
ELP.B  ELP.E.—1 4
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¢) Forallz € COU C®,we have

2zl — A — B — E_
normrank |B'P.,A + D.C., B'P.B+ D.D, B'P_E.
E!P A E'P_B E!P E, — I

= n + I, + normrank{C..(zI — A)™'B + D..}.
d) We have S..: =1 — CoopQ.C ooF > 0.
e) Q.. satisfies the following discrete algebraic Riccati equation
Q.. = A;Q. A+ EEL — EM.(M ML M E. + ArQCorSECH QAR (4.3)
f) For all z € C°U C®,we have
2l — Ay E.M. ArQuCur
normrank 0 M M. 0 = n + q. + rank(M..).
— Coor 0 CoorQoCol — I
g) p (PuQ.) <T1.
h) || Dupry || <1,where Dyypy is as defined in (3. 10) with P.. and Q.. satisfying the
above conditions a)~g), C; = 0and D, = M., .
Proof At first,let us note that T, (K ) ,the closed-loop transfer function from we to 2w
under the controller of (3.5) and (3. 6) with Q(z) € @ ,is given by
T (K) = Cop(zl — Ap) 'E.. + [Coor(zl — Ap)7'B + D, JW(2)M... (4. 4>
It can be simply verified that T, (K) is equivalent to the closed-loop transfe function from w..

to 2., of the following auxiliary feedback system,
x(k + 1) = Arx(k) + Bu(k) + E.w.(k),

Zeo (k) = Coopx (k) + Dou(k).
u=W(=)y. (4. 6)

Furthermore,let us observe that the system characterized by the quadruple ( Af,E.,0,M)
has no invariant zeros on C° due to the fact that Aris stable. We are now ready to prove the
theorem.

(=) :For the given system 3.,if there exists a stabilizing proper controller « = K(z)x
such that the corresponding || T,(K) ||, =75 and || Too(K) | & <1 ,then by Theorem 3.1
we have Im ( E,) Ty, (3,),which is equivalent to the fact that there exists a constant gain F
such that Ap: = A + BF is stable and (3. 4) holds. Next, || 7w (K) || = <<1 implies that there
exists a @(2) € @ such that the corresponding W(z) is an H.. suboptimal controller to the
auxiliary system 2. of (4.5). We also observe that Conditions 2 a)~c) in Theorem 4.1 are
the conditions under which there exists a state feedback H.. suboptimal law to the following
system,

x(k + 1) = Ax(k) + Bu(k) + E.w. (k),
y(k) = x2(K), 4.7
2o (B) = Coox (k) 4+ Dou(k).

Then,from Theorem 3. 3 and some simple algebra,it follows that Conditions in Item 2 hold.
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(<) .Conversely, we assume that Conditions in Items 1 and 2 in Theorem 4. 1 hold.
Then Conditions in Item 2 imply that there exists a strictly proper controller W(z) € RH®
such that when it is applied to Z.. the resulting closed-loop transfer function from w. t0 2w
has H.. norm less than 1. We first note that due to the special structure of 2. ,all the inter-
nally stabilizing controllers must themselves be stable. Hence W (z) is ¢table. Then it 'is
straightforward to verify that the controller (3. 5) and (3. 6) with Q(z) = W)U —
E,E}) (2l — Ap) achieves || T,(K) || ;=77 "and’ | Tw(K) || »<<1. This completes the proof
of Theorem 4. 1.

Remark 4.1 Necessary and sufficient conditions for the existence of an internally stabi-
lizing simultaneous H;/H., optimal compensator which makes the H., norm of the closed loop
system from w.. to 2. less than some ,a priori given,upper bound 7 >> 0 can be easily derived
from Theorem 4. 1 scaling.

5 Conclusions

Necessary and sufficient conditions are established so that a simultaneous H,/H.. prob-
lem for discrete-time systems is solvable using dynamic state-feedback controllers. The class
of singular problems considered have a left invertible transfer function matrix from the con-
trol input to the controlled output which is used for the H, norm performance measure. The

results extend the work of [7] in the continuous-time setting to the discrete-time setting.
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