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Abstract: In this paper,a new identification technique is presented. The new technique uses
both steady-state and dynamic information to identify the nonlinear gain and impulse responses of
linear subsystem of the Hammerstein system,respectively,and the estimates obtained are of strong
consistence. Besides ,the paper also studies the asymptotic distributions and convergence rate of es-
timation error of nonlinear gain. Simulation results show that the new technigue is very efficient
and practical.
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1 Introduction

A wide variety of controlled plants with nonlinear actuators can be described by the
Hammerstein system which consists of a zero memory nonlinear gain followed by a linear dy-
namic subsystem ,although identifying the Hammerstein system has received considerable at-
tention!~%, so far,identification techniques proposed have not given the strong consistence
estimates of unknown parameters of the nonlinear gain and impulse response of the linear
subsystem of the Hammerstein system.

In this paper,a new identification technique integrated steady-state estimation and dy-
namic identification is presented. Under conditions of knowing the construction of the nonlin-
ear gain,the strong consistence estimates of unknown parameters of the nonlinear gain and
impulse response are obtained,and the asymptotic distribution of the estimation error and the
convergence rate of the errors are obtained.

2 Steady-State Identification

Consider now a discrete-time Hammerstein @ W k)

system showed by Fig. 1, where #(%) and y(k) h(i) —é—.l'(k)

are the input and output of the system at the

. . . Fig. 1 Hammerstein system
time £ , respectively; w(%) is the output of the < ey

zero memory nonlinear gain,and unmeasured; {(%) and 7(k) are the noises of the system.

The system mentioned above can be described as follows
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yB) = SSh@O[uk — )] + ek, D
i=0

e(k) = D h@DEGk — i) + (k). (2)
i=0

For simplification,the following assumptions about the system and the noise are made.

Assumption 1  7(%) and (%) are mutually independent white noise with zero mean and
varianced 7{ and 7§ ,respectively,and there exists constant § > 0 such that E|7(%) |***and
E|¢(k)|**® are uniform boundness,.

Assumption 2 The linear subsystem is strictly stable,i. e. ,

DkIR(R)| < oo and A= D (k) # 0.
k=0 k=0

Assumption 3 @[ + ]is piecewise continuous with boundary M on the real variable.in-
terval of the u(&)[a,b].

The input signal here is a step function,that is ,when # > 0,4 (k) = o, where ¢ € [a,b]
is a continuous point of @[+ ] ,and when £ < 0,u4(%) may take arbitrary value belong to [a,

b]. The total number of sampled data is N . According to (1) ,we have

N k+T
NZy(k +T)= NEZh(oas[a] + = Z > @Ok +T — ]
=1i=4(+T+1
+ %,Ze(k NP )
k=1

where T denotes the steady-state time, Furthermore,according to (1) and Assumption 2 we
find that

lim NZe(k +T)=0 (q), 4
where (q) represents the convergence in mean square. So,from (3) and (4) it follows that
lim NZM +7T) =20[0] (@), (5)

Let F (o) = AP[c],Fy(0) = %Zy(k + T),and 6y (o) = Fy(o) — F (o) ,from (5) we know
=1

that Fy(o) is the strongly consistency estimate of the F(¢), and one has

.

dn(o) = NZ 2 h(i)(@uk + T —i)] — @[o]) + NZe(k +.T), (6)
=1i=k+T+1
Furthermore ,defmmg un(o) = NZ Z h(@)Y(DLulk +T — )] — @[ o) then
=1i=4+T+1
hm[ VN uy (o) |< 2M 11m —Z z |A() |
VN ==+
=2Mlim >, [h@]|/| VN — /N —=1]|
Nerooi  NFT+1
<aMlim > ik =o. Q)

Ci=N+T+1
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By the central limit theorem,we obtain

: ] <
lim — >k +T) =7 (W)
lim —= > 7

~ N(0,7), (8
1 N
lim —— k+t—)=¢ (W)
il D :
= N(O ,7‘5) ’ (9)
N
where (W) represents the distribution convergence. Let &y ; = LNZQ’(k + T — i) ,then
K=1

VN-—|i—j| =1, we have

N N
Elyn.in.,= —1—/—22 ER+T —DEG+T —
RIS et
ke
= (N — [i = jDri/N, (10)
SO
E{E = I}Ii_{EOEgN,r{N.j = 7. an

Because the arbitrary linear combination of normal random variables is also a normal

random variable ,and the limit of the normal random series in mean square as well,then

lim NZe(k +T)= hm(—ZV(k +T) + NZZh(z){(k idl = a0

=0

=7+ Zha)g (W)
i=0

~ N(o,rt + (D hG)H). (12)
Hence,from (6), (7)and (12)it follows

lim V' Noy(0) ~ N(o,r? + (D hG)HD). 13)
N—oo

i=0
In the following,we shall analyse the convergence rate of the oy (o). We have

N
E(VNoy(@)'= E(/N (@) + + etk + T))?
=1

1 N
= (VNpuy(0)) + E(——=>e(k + TH)2. (14)
b «/N;
Due to (7) and (12),it follows that
lim EC/Noy(0)? = 7 + (S, 5)
. i=0
So
1 1
(E8%(0))T = Ot——), (16)
~n(o 2 ~

Theorem 1 If assumptions 1,2 and 3 hold,then Fy () is the strong consistence estimate
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of the F(o) ,and the asymptotic distribution of the estimation error is normal. Furthermore,

. il
the convergence rate of the error is the same as N

Taking o; from [a,6]1G = 1,2,,p) such that A®[ ;] is not mutually equal and g; is the
continuous points of the @ [ + ]. Making p number of times open-loop steady-state estimative
experiments ,we may obtain the strong consistence estimates of the A®[s;] . If both Aand the
construction of nonlinear gain are known,then we may get the strong consistence estimates
of the unknown parameters of the nonlinear gain,otherwise ,we may construct a polynomial
to approxirhate the nonlinear gain by using the (0,,A®[0,]) ,and the estimated precision will
become highter with the increase of p .
3 Dynamic Identification

Taking up independent and identical distribution random variables sequence {u(k)} as
the input signals,and the probability distribution of the u (%) is the uniform distribution on
the discrete point set {g;|i = 1,2,+,p} . Although we can not measure the F(a)) (= AP[s,],
by using the results obtained from open-loop steady-state estimated experiments,we may get
the strong consistence estimates of the F(,) . In fact,when % > 0,{w)} = {AP[uk)]} is
the independent and identical distribution random variables sequence on discrete point set

(AD[5,]]i = 1,2,++,p}. Hence (1) may be rewritten as follows

Y& = S h Dk — i) + ), an

where h* (i) = k() /A, Obviously, y(&) is not a stationary (wide sense) process . Thus,Con-

struct another system as follows

Yk = D kT (Dwk — i) + eh), as)
i=0

where w (k) = A®[u(k)], {u(k)} is the independent and identical distribution stationary pro-
cess whose probability distribution is the uniform distribution on point set {g;|i = 1,*,p},
and when & = 0 one has #(k) = u(k) . It is obvious that y(k) is a stationary process

Constructing a continuous function G ( + ) with boundary M, such that

P
EGLa(t] = 5 >,Ge) = 0, (19)
i=1
P
m = Ew(®)Ca k)] = %;maoc(m) 0, (20)

Obviously, {G[u(k)]} is the independent and identical distribution stationary process,and
mutually independent with w(s) (s # &) ,then we have
Ey(k + DGLuk)] = h* (jdm, D
h* () = Eyk + HGLuk)]/m. @2
Now ,the key problem is how to calculate the Ey(k + /)G[u(k)]. In the following,we shall
prove that V j == 0,z;(k) = y(k + jDG[u(k)is an ergodic stationary process. Since

%) = Dkt Dwk + j— DGLuk)] + ek + NGl (23)
i=0

then
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Ez;(k) = h* (jOm. (24)
Hence ¥ ¢t > 0. We have
Ez;(k + Dz;()= D> h* (Dh* DEwk + j — HGa®)]
i=0 [=0
cwk 4+ j+t—DGutk + )]
_{h'(j—t)h*(j—Ft)mz+h”2(j)m2, j=t, o
— rrGm?, i<t
It follows that z;(%) is a stationary process and the correlation function has the following
form
R;(t)=E[z;(k +t) — h* (Dm][z;(k) — h* (Oom]
= Ez;(k + t)z;(k) — h* (jOm?
(G —Oh G+ om?, j=t,
(PO R (26)
0, J<<t.
Hence
1 N—1
lim N;]R,.(:) = (0) @7
So,Applying the ergodic theorem,we have
N
E3(k + HGlat®)] = lim 5> 35k + NOE®]. @ (28)
=522 k=1
N
Defining b} (N) = — > 5(k + HGLE(R)], from (24) and (28) we find that
k=1
},i*mh}‘ N)=hr"(p. (@ 29
Since y(k) is unmeasured, we can only measure the y(%) . According to (17) and (18) we
have
15 — yk) |= D, [h) | |wlk — i) — wk — )|
=Tea
< 2|A1M D] |hG)]. (30)
i=kt1
So
lim (y(k) — y(k)) = 0. (31)

N
Defining h,(N) = —5 >3y (k + HGLu(e)], we have
=1

] N
B (N) — BN = ST Gk + HELEM] = y(k + HGLu®D)
k=1

N
= ISUG + ) — 3k + DIGLu® ], (32)
k=1
From (30),it follows that
lima* (N) = limh,(N).  (a) (33)

Since w(k) is unmeasured,if both the nonlinear gain and impulse response are not re-
stricted by another conditions,then we cannot identify them at all. Thus,without loss gene-
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rality ,we suppose that A (1)=1.Hence from 2" (j) = h(j)/A, one has A = 1/h" (1) and
N
AN = >y + DGLu® (34
DLV =

is the strong consistence estimate of 4. So,
hi(N)= h; (N)A(N)

N N
= >y + NGLuk)1/ D 3k + DGCu k)] (35)
k=1 k=1

is the strong consistence estimate of A(j) .
Theorem 2  If the Assumptions 1,2 and 3 hold,then the estimates A(JN) and A;(N) giv-
en by (34) and (35) are the strong consistence estimates of Aand A(j) ,respectively.
In the following,we shall give the asymptotic distribution and convergence rate of the
estimate error. At first,because h;(IN) is the unbiased estimate of A(j) ,thus one has
E[h; (N) — h* (D) = Er*%(N) — h**(j), *(36)

m*ER"3(N) —NZZZh (iHh* (t)ZZEw(kJrJ—z)G[u(k)]

i=0 =0 k=1 s=1

N
e E D %ZEeZ(k + NG LA

szzh @h* (t)ZEw(k +j— Dwk + j— DGLuk)] + Nq

=0 =

+ NZZZ}; (i)Hh* (t)ZZEw(k +j — Dw(s + j — HGuk)IG[u(s)], (37

=0 t=0 k=1 s#*k

=) oo N
LI SRt Rt () S Bw + j — DB + j — DG TA®]]
i=0 t=0 =1
M, S RGN, (38)
Py

N
xa = ﬁZEeZ(k + PCaB]< M /N,  (F = E&k), (39)

NZZZh ()h* (t)ZZEw(k + j— Dw(s + j — )G[uk)IGlu(s)]

i=0 = k=1 s#k

= (N — Dh**(j)m*/N + szh ) (2j — 1>2Ew<k +i—0

i#j
cwk)Gluk + j — )IG[u k) ], (40)

where @ =max{ 0,7 — j }. Furthermore,we obtain

E[h; (NY — h* (DT <h"2 (/N + (O |hG) [)?/NA
i=0

+ (MM, > |hG) )/ Nm?® 4 M /Nm?, 41)
(E[h; (N) — h* (HDT)%= 0(—=). (42)

VN
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According to (33),it follows that

g 1
E[h(N) — h(j) )% = O(—).
L ] o (43)

Hence ,we may get the following theorem

Theorem 3 If the assumptions 1,2 and 3 hold,then the convergence rate of 2;(N) —

N 1
h(j) is the same as T

Studying the asymptotic distribution of 2;(N) — h(j) is very difficult,even if e(k) =
(k).

Total identification may be described as follows

1° Pick up p numbers of 6; yand make out p number of times open-loop steady-state ex-

periments and calculate the Fy(0;) according to the following formula

N
Fy() = 52y +T).
=1

2° Construct G( + ) and Calculate the m
»
lZG(ax) =0,
D=

4
m = 2 > Fy(@)G(0) # 0.
i=1

3° According to the following formulae,calulate A and ()

1 < i
gL (W;y(k + DGLuk) D,

N
hG) = 1Sy + DGLuk /A
k=1

4° Calculate the ®[0;] ,according to the following formula
Plo;] = Fy(o:)/A.
4 Simulation Studies of the Classical Systems
Example 1 Linear system of nonlinear input with dead band
OLu(k)] = ru(k) — Asgn[u(k)], |u(k)| = 4,
0, lu(k)| < A,

—1 =0
(k) =1 1(1_4%_05"(12?1 2Lwk) + £ + (0],

Where ¢! denotes the backward shift operator,the variances of 7(#) and £(#) are 1. In the

course of the simulation,we take 0, =— 2,0, =— 1,6, = 0,0, = 1,and o5 = 2, and pick up
G(u) =u,T =100 and N = 1000. The estimates of 7 and A are given by the following formu-

lae

r(N) = [Fy(— 1) + Fy(2)]/A(N),
A(N) = [2Fy(— 1) 4+ Fy(2)]/A(N),

N
AN = GG+ D6Tuw D
k=1

The simulation results are given in table 1.
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Table 1 Numerical results of example 1

A r A AD(— AP(— 1) AP0 AP AP(2)

Parameter

True values 2.4 1 0.5 —3.6 —1.2 0 1.2 3.6

Estimated values 2.4129 0.9949 0.4976 —3.6001—1.1997—0.0002 1.2004 3.6004

(D h(2) h(3) h(4) h(5) h(6) h(T) h(8)

Parameter
True values 1.0000 0.7000 0.3500 0.1750 0.0875 0.0438 0.0219 0.0109

Estimated values 1.0000 0.7153 0.3612 0.1642 0.0819 0.0492 0.0246 0.0113
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