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Robust Delay-Dependence Stability for Linear Systems
with Nonlinear Parameter Perturbations*
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Abstract: The problem of robust stability of delay dependence for both single and composite
uncertain delay differential systems are considered. Making use of the delay integral inequality,
some sufficient conditions for robust stability,in terms of a bound on the spectral radius of a pre-
scribed nonnegative matrix,are presented. Examples are given to demonstrate the validity of our
results.
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7 Introduction

In recent years,the robust stability for delay differential systems with uncertainties has
received considerable attention™'**1, because in many practical control problems uncertainty
may also occur in delay systems due to modelling errors, measurement errors, linearization
approximation,and so on. The problem is difficult because the systems with delays are inher-
ently distributed parameter systems,and the delay is assumed to be unknown. In [4],the de-
lay-independent stability is discussed and some effective criteria which do not include infor-
mation on delay are obtained. It is not quite reasonable to ask a stability criteria for the delay
system to have that property,although it is more easier to attack mathematically. More re-
cently,therefore smore effort is devoted to delay-dependent stability criterial*?2, v

In this paper we use the iriequality technique’™ and obtain some new sufficient conditions
for robust stability of delay dependence. In application,better bounds than those reported in
[1,2] are given for both the delays and the perturbations.
2 Main Results

Consider the following uncertain dynamical systems with delays

x(@) = Apzx (@) + Azt — b (1)) + DA, (t,2 (1)) + DAt x (2 — hy(8))), D

where x(¢) € R", A, and A, are known constant matrices of appropriate dimensions. The un-
certainties AA, and AA,; are unknown Caratheodory functions and represent the system pa-

rameter perturbations with respect to the current state z(¢), and delayed state x(z — A, ()),

respectively. 4;(¢) is an unknown time-varying delay with 0 <Ch,(2) <r,i = 1,2, where ris a
constant. The initial function z(¢) =¢@),¢t € [, — 7,2, ], is continuous and denoted by ¢ € C,
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Define [« ]* as the vector (or matrix) obtained by replacing the entries of [ » ] by its
modulus. Further,suppose that there exist ««,.7| , whose elements are nonnegative with
appropriate dimensions such that the uncertainties satisfy

(A4, 'S A o[a® Y, [DA (ta(t — hy(ON T < o [zt — RG], (D)

Theorem 1 Let Redy()and p(+) denote the maximal real part of all eigenvalues and
the spectral radius of a matrix ( + ),respectively. Then the system (1) is globally asymptoti-
cally stable if Redy (A, + A,) << 0 and

6 oo
p( Z‘f [e“or 0B, 1+ dzP,-) A pdh <1, (3)
i=170

where B, = A, A,,B;, = A},B, = B, = A,,B, = B; = I(an unity matrix), P, = P, = Iz, P,
= ot Py = &7,Py = & and Py = o7,

t

Proof Since 2(¢t — A) = z2(¢) — J z(s)ds , the system (1) may be rewritten as {ol-
h

!

lows
z(t) = (Ay + ADx () + AA G,z () + DA, Gyx(t — hy))

— Aljl_‘h [Aol'(S) + AXI(S - hl) 'i-— AA()(S,J’(S)> “ AA;(S,.I(S — hg))]ds (4)

Let A = A, 4+ A,. By the variation of parameters formula, (1) can be rewritten as

x(t)
= e (2,) + jt e “THAA (s, 2(s)) + DA (s,2(s — hy))

- Alft,/ [Apx(u) + Ayx(u — h) + DA, a(w)) + DA (uyx(u — hy)) Jdubds, (5)

Let [z, ] = [l 2w | eorees 1 0% 2 I+ = sUp—coco | 2:(2 + 5 Jand x(to + 8) = ¢z, —
o)for s € [~ 27, — 7. Thus,by the condition 2,

|, @l d< iy, |

5

e — @) 1 du < Pl T,

f ’ [AA(uyx(u)) ]t du < P[], Jy [AA Guyar(u — A1 de < P2, 04,
~hy s—h,

-

[AAO(“ 91(”))J+< ps[ﬂ“z];F ’ [AAl(u sxlu — hz))]+< Ps[xzjzt- (6)
Applying the absolute value operator [+ 1" to (5) where “+7” and “<” are applied element

by element to vectors and matrices,
(20T [T e T+ [ S BT P e Jids. @
O
Since ReAy(A) < 0, there is a nonnegative matrix M such that [e*]*<{ M. Thus
eI < MIB 1+ | S0 oB3 ps s, ®

Let y(2) = sup, _.<,c;[2(s)]* ,then [x(6)]*<< y(¢) and
@O <M+ My (). (9
By Theorem 9. 16 of Lasalle™ and p(II) < 1, we have (J — ™' = 0and
O < y@) < [T — O] "M[$(t)1'<< 02 (N1is a constant vector), (10)
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which implies the stability of (1).
To prove lim ..z () = 0 we let e = [1,-+,1]" € R” ,and for any € > 0 let 8 € R" and

B= Il —ID"UI+ 2D | ee=0. an
From ReAy(A) < 0, we have [e*]"—>0as t— co. Thus ,for given ¢ € C, there is a positive
number 7' such that
o 6
Cer 0§ (1) T < B2 Y ¢t + T L S[etB]* PAds < /2. (12
i=1
From (7) and (12),we obtain

LT t 6_‘
eI <[+ [ ) DB Pl ids + 672

0

<[ Z[e"“B T+ PQdu + | Z[e"“ »B,1* P,[z.Jids + B/2

6

<>[ (BT PLaTids + 8 for >0+ T. (13)

i=1
Since [2(1)]*<< 2, we may let im,...[2(#)]"=r € R.. Thus there exists a sequence {z, ¢,
=to+ Totpey > tpsp = 1,2, } and an integer p* such that

(a0, e <7+ B, r—B<[x@)]" forall p=p~,

where [LP]?A.T = SUP_germ<s<ol 2 (¢, + $) 1", Combining (13),we have

6 (2
r— <1< D[ T[eM’r”BJ* Plr + B1ds + B
i=1Y %"

< H[r + B]+ B, for » + T + 2z (14)
Applying Theorem 9. 16 in [5] and using po(II) < 1,we have (I — II)™' == 0 and
< U—ID'UI+ 2D or |r| <e ((by(QD). (15

This implies lim,...z(¢) = 0 and completes the proof. .

For the system (1) with (A4, + A,) non-defective (i.e. , whose elgenvalues are different
each other) ,we have the following corollary. )

Corollary 1 The system (1) is globally asymptotically stable if (A, -+ A,) is non-defec-
tive ,Re'/\M(AO + A;) < 0and

ed, (A, + A4))
where P = o, -+ o, + [A ] ([Ao 1T+ [A T+ oy + )7, Red; (A, + A)) is the real part
of the j th eigenvalue A;of (4, + A,),v;and w;are the eigenvectors of (4, + A,) and (A, +

AT associated with the eigenvalue A; with w]v; = 1, respectively.

P Z:wa[vw] PlapE <1, as

Proof It is evident that D(¢) = [e4v,, ¢+ ,e%'v, | is a fundamental matrix for z = (A4, +
Az, From wiv; = 1and (5.1) in [6, § 5],we have

et A = B(PTI(0) = }jv w]elt an
and

J et A B TF di < Z["ij}]Jr [B, ]t/ — ReA (A, + A1), (18>
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6
which implies I << & and (I — I < (8 — I) by combining > ,[B/]* P, << P. Since p(8) <
i=1

1 is equivalent to Redy (2 — I) <C 0 from Theorem 9. 165!, we have ReA, (I — I) <C0 by using
Lemma 2 in [[7]. Again applying Theorem 9. 16 in [5],we obtain p(II) < 1. Invoking Theo-
rem 1,the result follows.

The above methods are very effective for low-dimensional systems. However,an increase
of number of variables may inevitably introduce computational difficulty. Therefore,we had
to find effective sufficient conditions for higher dimensional systems or composite systems.

Assume that (1) admits a decomposition of the form:
j'l:,- = A;J—”; —+ B,-:c,—(t — ) + fi(t’xt) y 19

N
where x; € R%,2" = [aT,-, 241, Zn,- = pn, A; and B; are n; X n; matrices. The functional

i=1

fi(t,x,) are the interconnections (involving uncertainties) among the isolated subsystems
J‘C = A,-x,- + B,‘x,‘(t - T)

and satisfy

. N
[fiCt,2)TF << D 0[]t (20)
=1

where C;; are n; X n; nonnegative matrices.

Similarly ,equation (19) may rewrite as
b= A+ Boz — B [Az(o) + Bals — 0 + fi,2) s + fi,z). @D

~ After applying the variation of parameter formula,combining inequality (20) we take the ab-

solute value operator on both sides to obtain
[z )7 < [e4r B¢ 0T+ [2,(6) T+

N

+ Jl [e<A"+B")(I—$)]+ Z {8ij(|:BiAi]++ EB?]*—)T + EB,‘]+ CijT + Cij}[xjs];;ds9 @2

J=1
where §;; is the Kronecher delta, i.e., 8; = 1,8, = 0(G =% j).
Let D = (D;;) be a block matrix and each block be defined as

D;; = (3‘;j(|:BiA,-]++ [Bf ") + [B]* Cir + Ciis 23
and diag {(+);} denote a diagonal block matrix whose ith block on its diagonal be (+);. Then
[:x:]+< dlag{ [e(Ai+Bi)<‘_’o):|+ } Ex(to)]-;. + J‘ d1ag{ [e(/l,.+13‘.)(t—s)]+ }D[I;];Tds (24)

In essentially the same manner as that theorem 1 follows inequality (7),from (24) we can
prove the following results.
Theorem 2 The system (19) is globally asymptotically stable if ReA, (A, + B;) < 0 and

ol deiag{[emi“"‘)’]* 1Dde| & pCHD < 1. (25)
0

Corollary 2 The system (19) is globally avsymptotically stable if (A; + B;) fori =1,
=, N are stable matrices with (A; + B;) non-defective and

i . T + '
ol diag (> —tlis] >D) D pE) <1, (26)
i=1

ReAj(Ai + B;)
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where v; and wy; are the eigenvectors of (A; + B,) and (A; + B;)"associated with the
cigenvalue 4; with wlo, = 1, respectively.
3 Ilustrative Examples

Example 1 The following example is reported in Su et al. {1 the system matrices and
the perturbations

- 2 0 -1 0
AO = l: :la Al = [ :l’ @n

0 — 1 -1 —1
0. 3cost 0 x, ()
DA 2 ()) = [ . , (28
0 0. 2singd L, (¢)
0. 2cost 0 x, (¢t — hy)
AA (tyx(t — hy)) = [ . . 29
0 0.3sintdlx, ¢z — hy)
Su et al. ' gave for the delay the bound 7 = 0. 1614. By the above Corollary 1,this bound can
' -3
further be improved. Here 4, + A, = [ } with the eigenvalues A, =— 3 and A, = —

2, and the eigenvectors of (4, + A,) and (A, + A,)7" associated with the eigenvalue A; with

wiv; = 1,j = 1,2, are respectively

B R 4 ) S )

Thus, '
:i: [vw] 1" _ {1/3 0 ]
<t —Red, (A, + 4D Ls/6 1/2

=1
and
H”I:l/l"' 0 :I[S.ST-I*O.S 0 jl*‘ [(3.5‘!"{—0.5)/3 0 ]
~Ls/e 172 4.5t 2.5t +0.50 L3le+0.5)/6 (2.50+0.5)/2
Since the maximum eigenvalue of the matrix & is (2. 5 + 0. 5)/2 ,from the condition (16),
system (1) is globally asymptotically stable if  <{ 0. 6 which improves the bound reported in
[1] for the delay (by 371%). Similarly,Corollary 1 can also guarantee that Example 2 in
[2]is globally asymptoticaly stable if 7<C0. 7647, but Su et al. ®*! gave the bound v = 0. 3188.

Example 2 We now consider the composite system (19) with the system matrices

-2 —1 —1 1 -1 —1 0 0
T e e I e ISR I
-1 2 10 2 —2 —1 —1
and the upper bound matrices of uncertainties

0.05. 0.05 . 0.1 0.1
Cy = s ('12 = s
0.05 0 0.1 0.1

0.1 0.2 . 0 0.53
C21 = s sz = .
0.1 0.1 0.28 0

-3 — 2 oo 11 2
A + B, = [ :l, J e MBS+ (g == _|: ]’
1 1, 1 0 0[ j s 211 3

(32)

Here
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— 1 1 o 1 1
— Ayt Bs+ Ao .
A, + B, [ o 1], Jo [e 1 ds [O 1} (33)

By matrix multiplication,we can easily obtain matrix H defined by (23) and (25) as follows
10. 257 4 0.075 10.1257 + 0.025 0.5+ 0.15 0.5z -+ 0.15
14. 357 + 0.1 14. 175z 4+ 0.025 0.7t + 0.2 0.7t + 0.2
0.2t + 0.2 0.3t + 0.3 1.287 4+ 0.28 1.537 + 0.53]
0.2t + 0.1 0.3r+ 0.1 1. 287 + 0.28 2.53t

H = (34)

4
Taking | H || = maijh,-j for nonnegative H = (h;;) in (34) ,we have
i==1

: IH| <1 if =< 0.021.
From Theorem 2,we obtain the bound z = 0. 021 to guarantee that this system is robust glob-

ally asymptotically stable.
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