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Abstract: The delay-independent asymptotic stability for linear systems with multiple delays
is discussed in this paper using the structured singular value concept. Our result shows that the de-
lays can be viewed as repeated scalar uncertainty blocks for a “nominal” plant. When the systems
have other structured perturbations,the stability issue can be analyzed in the frame of p- analysis
approach.
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1 Introduction

The study of stability for time-delay systems can be divided into two groups: one is sta-
bility independent of delay™~"; the other,stability dependent of delay®™~1%), Since usually the
delays are unknown,it is more satisfactory if a time-delay system is stable independent of de-
lay.

[1~4] studied asymptotic stability independent of delay for single time delay systems;
while[ 5 ~ 7 Jfor multiple time delay systems. Their criteria are only sufficient conditions.
Though the conditions in [5] may be necessary under some conditions ,they are limited to a
very special class of systems. To the authors’ knowledge ,necessary and sufficient conditions
have not been completely characterized for general time-delay systems.

In this paper,we will present a characterization for linear systems with multiple delays
using the structured singular value concept. Our result shows that the delays can be treated
as repeated scalar uncertainty blocks for a “nominal” plant. Thus when there are other uncer-
tainties in the plant model,we just need to lump all the uncertainties into diagonal block form
and analyze in the frame of 4 analysis approach.

2 Preliminaries

Consider the following linear system with multiple delays:
@) = Az@®) + D Dx(t — 1),
f=1

2.0
x(t) = ®&), <0,

where A,D; € R™" and 7,(i = 1,+,7) are uncertain time delays. System (2. 1) is called
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asymptotically stable independent of delay (i.o.d.),if for all delays 0 <7 < co(i = 1,°+-,

r), the system is asymptotically stable,i.e. ,det (s — A — ED,»e“‘Tr‘) # 0,Y Res = 0.

i=1
Our analysis is based on the structured singular value concept!, For matrix M € C™”

and the following uncertainty block
A, = {diag[é‘ll,.l yonr ’651’}’49"'1"" Q545 ]:0, € C,As,;, € Cm,1 IS, 1< j < F),

2.2)
S F

where Zri -+ Emj = n, the structured singular value of M with respect to the structure A
=1 i=1

is defined as:

pa(M) . = - ! s (2.3
min{c(A);A € A,det(I — MA) = 0)
unless no 4 € A makes I — MAsingular,in which case p, (M), = 0,
For transfer function P(s), the structured singular value is defined as
pa(P): = setslgoﬂa(l)(s)) = Slipﬂa(P(jw)). (2.4)

Structured singular value plays an important role in the analysis of structured uncertain-

[112] its computation was studied extensively in the past years. A commercial MATLAB-

ties
based toolbox, - analysis and synthesis toolbox*1,is now available to compute it efficient-
ly.

3 Main Results

Consider system (2. 1),let

I"
P(S): = : (SI - A)vl[Dl e Dr]’ (3.1)
A: — diag{aljrn"'s&]n:ai S Cyi - 1,"‘,7‘} (3 2)

then our main results can be stated as follows:

Theorem 1 System (2. 1) is asymptotically stable i. 0. d. if and only if A is asymptoti-
cally stable and p,(P) < 1.

Proof Sufficiency. Note that p,(P) < 1 means that gy (P(jw)) < 1,Y w, so for all A C
A, || All =1, we have det (I — P(jw)A) %0,V w. By the definition of the uncertainty struc-
ture in (3. 2) ,we must have det (I — P(jw)A) = 0,Y wfor all A C A where |8;] =1,/ =1,

«=*,7. Since for any 0 < 7; < oo, we have |e % | = 1, therefore,
det(I — P(jw)diag{e ™11, o e ™)) £ 0, V w,¥ 01 < o0, = Tyeeeyr,
(3.3)
Note that

det(s] — A — ZDie“Tr‘)
fa=]

In
== det(s] - A)det([ — (SI - A)_ll:Dl’,..’Dr:ldiag<e'“rl-‘1”,,..’e_T,,SI"} e )
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= det(s] — A)det(I — P(s)diag{e ™[, e ,e7%"1,}) (3.4)
and that A is asymptotically stable,by (3.3) and (3. 4),system (2.1) is asymptotically sta-
ble i.0.d..

Necessity. Suppose det (s — A — EDie"”Ti‘) #0,Y Res > 0and 0 <7, < oo (i = 1,000,
} i=1

r), then we have:

A Res > 0, det(sl — A — ZD,—CMT"S) #* 0, as T —> co(i = 1,00057) (3. 5)
=1

thus V Res > 0,det(s] — A) £ 0, i.e. , Ais stable.

When s = jo,det (jwl — A — ZD,-e""‘”i) =0 for 0L, <oo(i =1,+,7), By (3.4),

i=]

we must have det Gol — A) % 0 and det (I — P(jw)diag{e 11, ,++,e™1,}) 7#0,Y @. The
former means that A has no eigenvalues on the jw axis,so in fact A is asymptotically stable,
The latter means that for any structured perturbation Ain (3. 2) such that 16| = 1, we can
always find 7; ’s such that 6; = e™" for any frequency @, so we have det (I — P(jw)A) £ 0,
thus £,(P) < 1. Q.E.D. '

Remark 1 Theorem 1 shows that for stability i. 0. d. ,the delays can be viewed as re-
peated scalar uncertainty blocks for the nominal plant defined in (3.1).

Remark 2 Since #,(P) << || P || «» a sufficient condition for system (2.1) to be asymp-

totically stable i. 0. d. can be expressed as:There exists a symmetric positive-definite matrix
X such that

A™X + XA+ D, XDDIX + I <0, (3.6)
i=1

which is nothing but the condition for [| P || » << 1041 A less conservativerapproach is using
the upper bound for #s(P), i.e. , pa(P) <inf | FPE-1 || .02, where F is over the following
sets;

F, = {diag{F,,,F.}.F, € C*",F, = F! > 0}. (3.7
Thus another sufficient condition can be expressed as: There exists symmetric positive-defi-

nite matrices F; (G = 1,++,7) and a symmetric positive-definite matrix X such that
ATX + XA + S)XDFFTIDIX + D FFT <0 (3.8)
i1 i=1

This condition is the same as given in [ 6],and if all F;’s are equal,then it is the same as giv-
en in [7]. Note that it is only sufficient,so in practice the result it predicts may be conserva-
tive.

Remark 3 In [5] sufficient (sometimes also necessary )conditions for stability i. o. d.
were presented. However, the criterion is limited to a special class of systems,i.e., Ais a
Metzler matrix or can be transformed to such form,so its application is very limited.

—4 0

Example 1 Consider system (2.1) with A = [ o 3

1 1
],Dza[ },Whereaio
0 2
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is a scalar parameter. By theorem 1,the system is asymptotically stable i. o. d. if and only if
la] <C1.50, whereas [2] gave the bound as |a| << 1.3110, and [3], |a| < 1. 3592. In fact,
since in this example '

det(sl — A — De™) = (s + 4 — ae™) (s + 3 — 2ae™™),
it is not difficult to verify that it has no jw roots if and only if |a| < 1. 5.

— 3 1 0 0 0 0
Example 2 Consider system (2.1) with A = | 1 —2 0 |\Dy=1|—1 1 1/,
— 2 1 — 1 0 0 O
1 1 1
D,=a|l 1 1|. It was given by Luo,et. al. ¥ to illustrate their conditions. With a careful
1 1 1

choice of transformation,they predicted the system is asymptotically stable i. o. d. if and only
if |a| <C2.5. The result can be directly obtained from Theorem 1.
4  Robust Stability for Uncertain Time-Delay Systems

In this section,we will consider system (2. 1) subjected to structured perturbations

m r Lle
20 = (A+ D aA)z@) + D, (D, + D) BuBuwz — 1),
i=1 k=1 I=1 4.1
x(@) =P), <0,

where A,D;,A;, By € R are fixed ,and @;, 8, are parameters which are scaled such that ||
< 1,|Bul <1fori=1,+,msk=1,,7;4 = 1,,L,. Let uncertainty block defined as:
A = diag{[4,,4,,A, ]} (4.2)
where
A =diag{8d,,*,6,1,:0, € Cob = 1,o,r},
A, = diag{a ], a,l,.0; € Ryi=1,,m},
4y = diag{ﬁnlm'"’,31L11n9"" 1'L11n9“°’ﬁrLrIn$lB/el € Rok = 1,000r50 = 1,2,L,}.
(4.3
Then we have:
Theorem 2 System (4. 1) is robustly asymptotically stable i. o. d. if and only if A is
asymptotically stable and g (P) < 1, where the state-space realization of P(s); =
Pll PIZ P13
P, P, P,lis:

31 P3Z P33
A [D, D] [A + A,] [By - By By By ]
I |
c, 0 > (4. 4)
0 G 0
where
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([ |
L : 0 0
1, 1, o
C,=|: ry Cys = | ny Cyy == 0 0 . (4.5)
n n - I"
0 0 4]

Proof By the results in the previous section,system (4. 1) is asymptotically stable i. o.
d.if and only if P(s) is asymptotically stable and pa (P) < 1 for all admissible parameters,
where

L

m . ‘1

Lr
P(s)s =CGI— A — DA [Dy+ D Bubu = Dt 2 BuBa) (4.6
i=1 k=1 k=1

It is easy to see
P(s) = Py + [Py, Plgj[Az ° } [1 - [P“ P”MAZ ° H —I[P“], “4.n
0 4 P, P;dL0 A4 Py

for all A,CA,,A;CA;.So by the main loop theorem™ ,we arrive at the conclusions.

Q.E.D.

When the uncertainties have other structure information,similar analysis can be per-
formed,if only we take the delays as repeated scalar uncertainty blocks.
5 Conclusions

In this paper,we derive a criterion for the asymptotic stability i. 0. d. for linear systems
with multiple delays using the structured singular value concept. We can,in fact,treat the de-
lay in the state as repeated scalar uncertainty blocks ,thus we can use g analysis approach to

analyze the robust stability issue,
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