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Sliding Window Delta Operator-Based Adaptive Lattice Filters "
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Abstract: The detailed procedure to derive a sliding window delta operator-based adaptive lat-
tice filter algorithm is illustrated based on the least squares 'geomet}ic projection approach in this
paper. Applications of this filter to system identification') and parameter change detection® have
been addressed.
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1 Introduction

Making use of the advantages of lattice filters and delta operator, Jabbari proposed a
delta operator-based lattice filter to identify the continuous-time model of a system. With a
forgetting factor,by discarding the signals far away from the current sampling instant, this
filter can also be employed to either track the parameter change_zs or detect the parameter
jumps™, In the presence of smooth model parameter changes,the filter can get a good trade-
off between small noise sensitivity and fast rate of convergence. However,in the presence of
abrupt parameter changes,the performance of this filter is greatly affected.

In this paper,we present a new solution for filtering those signals which are produced
from fast time-varying models. We use a finite length sliding window to capture the most re-
cent signals close to the sampling instant to improve significantly the tracking capability of
the lattice filter.

2 Notations and Definitions ;
Let y(&) be the filter input signal at sampling instant &, the data vector at instant 2 — »

within the window of length w is defined as

Y (b —n)=[ytbk —n),y(k —n — 1),o 9k —n—w-+ 1)]T € R, (1
And we form the following subspace
H, (k) = span{Y, (k — n),0Y (b — n),o, 0" 'Y (k — n)}. (2)
Note that H,,,, (&) = {0} and & is the delta operator. We introduce two vectors
$=[1,0,+,0]" € R“*! and ¥ = [0,0,,1]" € R**! (3
and define .
P, . (k) = orthogonal projection operator onto H, (&), 4)

then for any vector x € R**', its orthogonal projection onto H, . (%) is P, . (k).
In order to derive the lattice filter algorithm,the following variables are also required,
which are listed in Table 1.
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Table 1 Definitions of filter variables

Name

Definition

Forward error vector

Backward error vector

First element of f,,,,,,(k_)

Last element of f, . (%)

First element of b,.,, (&)

Last element of b,.., (k)

Residual of ¢ with respect to H, ., (k + 1)
Residual of ¥ with respect to H,,.,(k 4+ 1)
The (n + 1) th partial correlation coefficient
Norm square of £, (%)

Norm square of 4,,,,(k)

Norm square of a,,,, (k)

Norm square of 83, (k)

FowB) = [I — P, ,(B)]OY,(k — n)
bp(B) = [ — P,k + DY, (k)
nw(k) = fL, (k)¢

do () = f1.,(O¥

Tuw (k) = b, (R)$

Qo (B) = BL, ()T

Ay (k) = [I — P,k + 1]$
Bu(B) = [I — P,,(k + 1D]¥
Koprw®) = (frw(B) b,k — 1))
R (k) = (frW(k) s fru(k))
R, (k) = (b0 (R) b, (B
Vnw(B) ‘= (2,0 (B) 50,0, (R))

Do (B) = (B (k) B0 (R))

3 Derivation of Filter Order Update Equations

From the definition of the delta operator,we have

Yo (b +1) — Y, (k)

oY, (k) =

T

(5)

“where T is the sampling period. Substituting this equation into (2) yields
H, . (&) = span{Y, (8 — n),Y, (b —n+ 1),8Y, (b —n 4+ 1),,0" Y (b —n+ D},

o (6)
therefore H, ok =span{Y, (k —n — 1)} ® H,, &) ' ¢
where the symbol @ indicates the sum of two subspaces.

From the definition of the backward error vector in Table 1,it can be seen that
Cspan{Y,(k —n — 1)} = span{b, (k¢ — D} § H,u(®), (8
where éLa stands for the direct sum of two subspaces. Substituting (8) into (7) leads to
H,i..(k) = span{b, ,(k — 1)} § H,.. (&), C)
and from the orthogonality in (9),it follows that
Poywk) =P, (k) + P (k—1) (10
where Poi1.0(R) P8, (B — 1) are the orthogonal projection operators onto the subspaces
H,., .k and span {b,., (2 — 1)} respectively. From (10),we have
I —Puo&]=[—P,k—D]I— P, k)] an

Similarly,from (2) and the definition of the forward error vector in Table 1,we have

H,oru(k + 1) = span{d"Y,(k — n)} @ H, (&) = span{f, (&) }&H, (&), (12)

Furthermore

[I = Prlk + D] =[I — P, — P, ., (] (13)

where P/, (#) is the orthogonal projection operator onto span {f,. (k) }.

Using (11),the definitions in Table 1 and the orthogonal projection formula produces

the order update equations for forward error vector f, ., (k)
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fu—q‘—l,w(k): —71-;[1 - Pﬁyw(k - 1)][1 - Pn,w(k)][anyw(k - 71) - 6”Yw.(k Y 1)]

= Lol = b,k — DRk = 1)Ky (B a

Similarly, the order update equations for backward error vector &, (%) can also be ob-
tained as follows -.

Ouirw(B) = b, (b — 1) — [, ()RS () T'K 1y 0 (B). A (15)

Based on (14)(15) and the definitions in Table 1,we have the following order update equa-

tions
en+1,w(k) = %—en,w(k) - %—r:x,w(k - 1)(R:uw(k - 1))~1Kn+l,w(k)’ (16)
dutiw®) = ) = g, (b — 1 RonaC — 1)K, (B, an
Partw(B) = 7,0k — 1) — €, ,(B) (R, (B)) 'K,y 0 (B, (18)
Tt (B) = @l — 1) — d (B (RS () Ky 0 (B, (19)

It should be noted that for R, and R’ (b — 1) in the above equations ,their update equations
can be obtained directly from (14)(15) and the definitions in Table 1

n+1 w(k) Rfl w(k) - YiszrH—l'w(k)(R;,w(k - 1))—1Kn+1,w(k)’ (20)

R (k) =R, (k= 1) — K, 1, (B)(RS ,(R)) 'K,y (B, @D
It is interesting to note that actually (18)~(21) are both order and time updated.
4  Derivation of Filter Time Update Equations™
Let g and 5 denote subspaces spanned by any vectors located in R“*!,& and 7 be any vec-
tors belonging to R**!, g (D s be the sum of two subspaces, &|, be the orthogonal prOJectlon of
€ onto s,and £|,q, be the orthogonal projection of & onto g @0 s. If the error between vectors &

and &/, is expressed by &, ,i. e.

§=¢6—¢, (22)
and similarly '
for =& —Elip. and (&), =&, — (51, (23)
then
e =6, | (24)
| (€grsg)

Epor s = (EDy s (1)) = (€, (1.0 = (5,41,) — s,37,) (25)

(550550
If we choose g = H, ,(k),§ = 8"Y (kb —n), 7 = Y, (k — n — 1), and with different choices
of subspaces for s, we can compute (§,,7,) = K,,, . (). Now,it directly follows that
Kiviw(l) =Koy ek — 1) 7, — 1D, , (b — 1)) e, . (k) (26
and Kitrw1 (k) = K1 0 (B) — g, (k — D (p,,(k — 1))7d, (). 27
Finally,in order to complete the filter algorithm,we need to derive the update equations for
Q,W(k) and z,,, (k). These equations can be obtained by using the orthogonal property be-

tween each backward error vector.

Using (10) ,we may write
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n—1

Pk +1) = S\ P ). | (28)
i=0

Therefore,using (28) and the orthogonal projection formula, ¢,,(2) and 8,.(k) can be

rewritten respectively as

n—1 n—1
— & — b A ri,w(k)
(k) = ¢ ;I,,w(/e)ys = ¢ 2, R;‘,w(k)b"’w(k) (29)
and
n—1 n—1 (k)
Brwll) =¥ — SVP ()W =¥ — > Low’2ly  p) (30)
i=0 =0 Rt w(k)

where 7., (k) ,q,,.,(k) ;and R}, (k) have been already defined Table 1.
Substituting (29) into v,,,(k) and exploiting the orthogonality of the backward error

vectors lead to

n—1

Yo (B) = 1 — D775, (B) (R (B)) 77y (B 3D
i=0
thus Vit (B = ¥, () — 7, L, (B) (R, (R)) 717, (B). (32)
Similarly,Substituting (30) into g, .,(k), we can get
1B = () = G (B (Ry s (B)) 71 q,, (R). (33)

After the complete algorithm of the proposed lattice filter has been derived,it is shown in
Table 2 for easy reference.

Table 2 The complete filter algorithm
Kt = Koy B — 1) + e — D00k — 1)) 7 e, ()

Kﬂ-{-l,'w—l(k) - n+l,w(k) - q:z,w(k - 1)(#:1,w(k - 1)) 1dn,w( )
r1,w(k) = "1" €n0 (k) — 1 Tuvw (ke — 1R,k — 1)K,y (R)
dirr o (B = ,—}: () — —Tq,,‘woa — DRk = 1)K ()

Tut1w(R) = (k= 1) — €,,, (k) (R}, () T K 11,0 (k)
(In—i—lyu/(k) = (,, w(k - 1) - dn.w(k)(fo.w(k))A—lKn-i-l,w(k)

rrLw(R) = Rf, w(k) — Tl'gKn.H,w(k)(RZ,w(k — 1))_'1Kn+1.w(k)
R (k) = R,’,,w(k =1 = KW (B (R, (BT K g ,W (R
Vii1,w(R) = ¥, (R) — 7, (R (R}, (k) 'r, ., (B)
Moty (R) = 1,0, (B — @0 (R (R}, (B)) 710 (R
with the initial conditions;for each £ >= 0,n = 0,
eo.w (k) = 1o, (k) = y(k) '
y—w+1, kzw—1
0, k<w—1
Ry (k) = R; (k) = (Y, (£),Y,(k))
Vo,w(R) = o, (k) =1
forn+1>%k, K, 1.(k)=0

do‘w(k) = qo,w(k> ==

5 Discussion and Conclusion

In this paper,the complete algorithm of a sliding window delta operator-based adaptive
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lattice filter has been derived based on the geometric projection operation under least squares
criteria. The unique property of the proposed filter is that it uses the finite number of data
points to extract the underlying information of the signals to be processed. When the window
length of the filter is reasonably short,such type of filters will be more sensitive to the
change of the signals than infinite length filters. Such a property is extremely important in
analyzing the time-varying nature of the signals. In fact,we have done a lot of simulation ex-
amples to support our theoretical results,though those examples are not included because of
t+he limited space. We have successfully employed this filter to identify the transfer functions
of continuous-time systems and detect the parameter changes in continuous-time system
models. Additionally,it has been found out that as compared to the infinity memory delta op-
erator-based lattice filter this newly proposed filter is more sensitive to the changes of system
parameters. .

Some open issues,i. e. the choice of window length, need to be further investigated. In
addition,it should be pointed out that this filter algorithm is more complicated than that of

the infinity memory delta operator-based lattice filter developed by Jabbarit.

References

1 Monin,A. and Sault,G.. ARMA lattice identification:a new hereditary algorithm. IEEE Trans. Signal Processing 1996,
44(2) ;360370 :

2 Settineri,R. and Tavier,G. . Adaptive RLS lattice filters for fastly nonstationary signals. IEEE Proc. of Acoustics,Speech
and Signal Processing,1990, 3,1807—1811 '

3 Jabbari,F. . Lattice Filters for RLS estimation of a delta operator-based model. IEEE Trans. Automat. Contr. »1991,AC-
36(7):869—875 )

4 Lev-Ari H. ,Kailath,T. and Cioffi,]. . Least-squares adaptive Lattice and sransversal filters :a unified geometric theory.

{EEE Trans. Information Theory ,1984,30(2):222—236

£F 5 SR E BB AT IEEE

(%ﬁk#ﬁ%%§°ﬂﬁJW%w

HE. 2¥S3C7'F‘JJ%%/J\:%@Mﬂ&%f%iﬂw&%T~ﬁ‘%fﬁz§:‘?&%‘% 5 20 T Y B BT E B A TR IR UL B
’ﬁ‘&%,%‘E’E)\Wi’eTiiﬁﬁ&ifi%%&%ﬁ%iﬁ%ﬂ%ﬁ?ﬁ%tﬁw'?Bﬁlfﬁfﬁ.
L. AEREE RS REHI &

XA A

FiREE m%ﬁ&&%z@%&ﬁﬂlﬁ%ﬂﬂ%?l#%i%ﬁ&%9@%ﬂﬁlﬂﬁ%%ﬂ%l#ﬁt%&,
1994 &E%‘}E“@f%i?‘zﬁ BB R T WA 31 75 2 @ George Mason k%mﬁﬁjﬁ%m:[ﬁ%m@;hiﬁlfﬁ. FENAER
ﬁ%‘?i}{‘Eliﬁfﬁ{‘é%&tﬂﬂ&ﬁ&lﬁ%‘ﬂﬁ%ﬁfﬁﬂ@ﬁf%-

wmESR 1945 4. 1970 HE YL T WAk MR AR 2| ﬁJ‘yh%?ﬁﬁ‘é’k,'ﬁgﬂ:éﬁ%Uﬂi. KRN R, R,
ﬁflﬁfﬁiﬁﬁiﬁd’f'%ﬂ)ﬁﬁﬁﬂﬁﬂﬁ@éﬁﬁlﬂk CIMS % 57 3 19 2 3 BLBE L4




