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Abstract; The model-free learning adaptive control (MFLAC) of a class of nonlinear discrete-
time systems is presented in this paper. No structural information, mathematical model, external
testing signals and training process are needed,it is designed only by using I/O data of the con-
trolled systems. The unmodelled dynamics do not exist. The simulation results for several typical
nonlinear systems are given to demonstrate the correctness and effectiveness of the approach pro-
posed.
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1 Instruction
For the adaptive control of linear systems,the theory and design principles have already
been understood quite well and the theoretical analysis methods are well established based on
the “key technical lemma ”™and “linear time-varying technique”™). However,a topic on non-
linear discrete-time system only a few papers have been devoted®™*, and only some special
nonlinearities have been considered. One of the reason™lis that the Lyapunov design tech-
nique,an extremely useful tool in continuous-time,is of little use in nonlinear discrete-time
"systems because the increments. of the parameter estimates do not appear linearly in the in-
crements of Lyapunov function. Moreover the methods for direcﬂy adjusting the controller
parameters based on the output error for general nonlinear discrete-time systems are not
;évailablem.
As we have known, the dependence on mathematical model structure of the controlled
System and the unmodelled dynafﬁics are the two main inevitable problems for the traditional
, ’adaptiVe control theory, therefore the design of the adaptive control system only using the
1/0 data of controlled plant will be of great significance both in the development and applica-
“tions of control theory. Two kinds of model-free control techniques applied successfully in
"QraCtice are the PID typed control technique and the adaptive control by using the neural net-
, "’%’Orks method, but they both suffer some limitations ; The PID typed can only cope with lin-
f4r time-invariant system,and the neural networks technique also has some problems which
are very difficult to be overcome,such as, the need of known orders of system and high speed
‘omputer, the determination of numbers of nodes and hidden layers and how to carry out the

th ; :
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2 Plant Description and Model Transformation

Following discrete-time SISO nonlinear systems are considered:

y(& 4+ 1) = FyR),y(k — 1) yeee sy — n)su(k) utk — 1), ulk — n,)).
where n,,n, are orders of output y(%) and input u (&) respectively, f(++*) is a nbnline
tion.

Rewrite (1) as

| k4D = [T ERu) Uk — D).

It is also called NARX model. Hammerstein model,bilinear model and some otl
linear system models can be shown to be special cases of (1) or(2). Since the gene
(1) or (2),the direct learning adaptive control of (1) or (2) will be equivalen
MFLAC.

The MFLAC is based on the following assumptions made about the systems:

A1) System (1) or (2) is observable,and controllable in following meaning ,th:
some expected system output bounded signal y* (k -+ 1) , there exists a bounded co:
put signal in time instant £, the output y(% + 1) controlled by it will be equai to the s
y* (& + D.

A2) The partial derivative of f( « ,u(k), * )with respect to control input « (k) it
uous.

A3) The system (1) or (2) is generalized Lipschitz,that is,satisfying

[Ay(k + 1) | < L|Au(k)| for any k and Au(k)
where L is a constant.

Above three assumptions made about the system are not too severe,the Al) i
assumption about the controlled system,to control such a system is impossible if A’
satisfied. The A2) is a condition that a class of nonlinear systems can satisfy althou
do exist some nonlinear systems which contradict it. The A3) is a limitation on th
change of the system output,obviously which includes a class of nonlinear systems.

Theorem For the nonlinear system (2), satisfying Assumptions A1),A2) a

then there must exist $(%), called pseudo-partial-derivative ,when du (%) # 0, we he
| Dy(k + 1) = $()du(k),
and [¢(&) | < L.
Proof (2) gives
Ayt + D= fFY &), ulk), Uk — 1)) — fYk— D,utk — 1),Uk — 2))
= fY &), uk), Uk — 1)) — [ &) ,ulk — 1), Uk — 1))
+ fY R utk — 1D, UR—1)) — fX (ke — Dyulk — 1),Uk —

using Assumption A2) and the mean value theorem, (4) gives

Ay(k + 1) = %Au(’k) + &)

where denotes the partial derivative value of f(+:+) with respect to « at some |

af
du(k)
tween (kb — 1) and u(k), and §(&) = f(Y (&) ,u(k— 1) U (k— 1 —fY¢;—1,u
Uk — 2)). :
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Considering the equation with a variable 7(%)

’ (k) = (k) Du(k), v (6
since condition Au(k) 7 0, equation (6) must have solution 7(&).
_
Let $(k) = ENO) + (&), D)
‘using (6) and (7),the (3) is the direct result of (5).
By using (3) and Assumption A3,we know that |$(k)| << L. Q.E.D.

Remark 1 Pseudo-partial-derivative (%) is obviously a time-varying parameter even
though the (1) or (2) is a time-invariant system. It is clearly that the $(%) has some relations
with inputs and outputs of the system till time instant 2. The Theorem gives that $(%) is a
“differential” signal in some meaning and bounded for any %, so we have some reasons to say »
that (%) is a slowly time-varying parameter and the relation with the #(%) can be ignored
when the magnitude of Au(%) and the sampling period are not too large.

Remark 2 From Theorem and Remark 1,we know that (3) is a dynamic linear system
with slowly time-varying parameter when Au (k) 7 0 and Au(k) is not too large. Therefore,
besides the condition Au(%) % 0 which will be considered in the control system design,some
free adjustable parameter should be added in the control input criterion function, which is
used to keep the rate of change of control input signal not vary too big.

3 The Model-Free Learning Control Algorithm

For the one-step-ahead controller™?, excessive control effort may be called for to
bringy* (A + 1) to y(2+ 1) in one step,particularly in the early stages of parameter tuning.
The weighted one-step-ahead controller,in general,leads to steady-state tracking error. So
we used the following control ihput criterion function

J@k) = [(yk+ 1) — y* (B + 1))2 4+ Auk) — ulk — 1))%], (8)
where Ais a weighting constant. ‘
' Since the term A(Au(k))?is introduced in criterion function (8),the controller from min-
imizing it will overcome the defects of the controllers mentioned above.

Rewrite (3) as - v

, v+ 1) = y&k) + ¢)dulk). ' D
Substituting (9) into (8) and differentiating (8) with respect to #(k) and setting it be zero
give the control law as follows :

oup (k)
A+ # k)

Remark 3 The piin control law algorithm (10) is a step-size constant series ,which is

u(k) =ulk — 1) + Ly (k+ 1 — y&)]. 10>

, :'added in (10) in order to get its generality.

' Remark 4 From (9) and (10),we can see that Ais not only a penalty factor on Au(%)? ,

S0 the substitution scope of that system (2) is substituted by system (3) can be limited in

Some extent, which,as a result,makes pseudo-partial-derivative ¢(%) not change too much,
"t also is a part of denominator in (10). This is an important parameter for this control sys-

te
, ™. Computer simulation results show that suitable choice of A can improve the performance
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of the control system.

Remark 5 From control law algorithm (10),we can see that this kind of conts
has an iterative learning form,it is different from the control law in [1],and has no re
with any structural information (mathematical model,structure,orders) of controlled
it is designed only by 1/O data of controlled system.

4 The Estimation Algorithm of Pseudo-Partial-Derivative
The criterion function for parameter estimation often used in this situation is

lowst!?

J(PR)) = [(yk + 1) — y(k) — $(kDDu(k))*].

" Parameter estimates by the algorithm derived from minimizing (11) often chat
fast or too sensitive to some individual abrupt incorrect sampling data which may be
by some instruments out of work or noise disturbance. In order to get an estimatio
rithm which has robustness,we modify the criterion function (11) as follows

J$E) = [k + 1) — yk) — $(R)Du(R))? + p($(k) — $pk — 1],

This is a new criterion function in parameter estimation. The item p($(&) — ;S(k
in criterion function (12) is to punish the rate of change of parameter estimation. Sin
the situation in time instant & is considered ,the estimation algorithm derived by min
(12) should have the ability to track the time-varying parameters. Using the procedu
lar to Section 3,we can obtain the parameter estimation algorithm as follows

NDu(k — 1
pw+ Du(k —

Remark 6 Remarks similar to Remark 3~5 can also be listed for (13).

B =k — 1) + i)ZEAyUe) — 3k — Dbdulk — 1.

Remark 7 The differences between the algorithm (13) and the projection alg
(also known as NLMS algorithm) are as follows :the addition of the small constant ,
denominator of the NLMS algorithm is only for avoiding division by zero,no practica
ing,but ¢ here in algorithm (13) is a weighting constant which punishes the rate of ch
parameter estimate,and the methods which the NLMS and the (13) are derived are ¢
ferent,the algorithm (13) is obtained by minimizing the new criterion function (12).
5 The MFLAC Scheme

Using the parameter estimation algorithm,the learning adaptive control law al

developed in Section 3 and 4 and the discussion above ,we give the MFLAC scheme as

° o g o ﬁkAu(k - 1) . ) . _
B = $ — D + IECET ST @) — $G = Dok = D,
) =k —1) if || <e,

W) — alh— 1) 4+ 22E rg iy T,

A+ g2 (k)

where the step-size series 0,7, € (0,2) ,and A,z are two weighting constants , €is

positive constant, $(1) is the initial estimation value of ¢(&).
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Remark 8 In MFLAC scheme above,the number of the controller parameters needed to
be adjusted on-line for the SISO nonlinear system is only one ,that is,pseudo-partial-deriva-
give. It is quite different from and much fewer than that of the traditional adaptive control
systemm°

Remark 9 The MFLAC system (14~16) has nothing with the controlled system ex-
¢ the I/O data,this is the reason why we call it MFLAC.

As we have known,the designing of the controller and estimator of traditional adaptive

cep

control system depends on the structure and the orders of mathematical model of controlled
system, but the structure and the orders of controlled system are very difficult to identify,
and sometimes have relations with time and environment,so the applications of various adap-
tive control systems reported may be failure due to the unmodelled dynamics. The MFLAC
system presented in this paper only use the I/O data of controlled system,the unmodelled dy-
namics disappear, therefore it should have strong robustness.
6 Some Selected Simulation Results

In this section,simulation results for two typical discrete SISO nonlinear systems are
given to demonstrate the effectiveness of the model-free learning adaptive control scheme
proposed. All the models below are only used for collection of 1/0 data. The simulations. were
performed using the MATLAB software.

The system’s initial values of following two simulation examples are set to be u(1) =

w(2) =0,y(1)=—1,y(2)=1,y(3) =0. 5,4 (1) is set to be 2, €is set to 10~°. The step size
“are set to be that 9, = 1,0, = 0. 6.

Example 1
y (k) 2 E<
(k+1> B 1+y(k)2+u(k> s < 500,
7 y(B)y(E — Dyl — Dulk — D (yk — 2) — 1) + alBdulk) £~ 500
1+ yt— 1%+ yk — 2)? ’ :

This system consists of two nonlinear subsystems. The structure,orders ,and parameters
~ are all time-varying. Both two subsystems were used for simulation separately in [ 5] by us-

ing neural networks,but in their simulation,the second part had no time-varying parameter
alk).a(k) =1 + round (G /500).

When
0.5(— 1). ~ round(%£/100), k < 300,
y* (b + 1) =<0. 5sin(kr/100) + 0. 3cos (kn/50), 300 < k< 700,
0.5(— 1). ~ round(%£/100), 700 <<k < 1000

and set the weighting constants A = 2,4 = 1 ,the simulation results are shown by Fig. 1(a)
-and (b),

If we set the weighting constants A = 1, = 1, the closed-loop response becomes more
’ active than the Fig. 1,but the overshoots are bigger. If we set A = 0,4 = 1, the system oscil-

la . . ) ..
tes. The simulation results are omitted due to the volume limited.
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Fig. 1 Simulation results for the MFLAC of Example !
Example 2

by k) yk — 1)
14+ y(B): 4 y(b — 12+ y(k — 2)2

y(k + 1) = 2. 5y(B)y(k — 1)
: 1+ vy 4+ y(k —

X cos(0.5(y (k) + y(k — 1)) + 1. du(k — 1) + 1. 2u(k), k>

This system consists of two nonlinear nonminimum phase subsystems connectec

+ulk) +1.1uk — 1), k<

=i+ 0. 7sin(0. 5(y (&) + y(k — 1))

cade, the orders of the system are time-varying. Both subsystems: were used for sir

separately in [5,6] by using neural networks. However,the first-subsystem can not

trolled effectively by the conventional neural network controller™. The second one v

for simulation without term 1.4 (k4 — 1) in right side is a minimum phase system!*-

When .

5sin(kn/50) -+ 2cos(kn/100), & << 300, ,

¥y (k+ 1) =<5(— 1). " round (£/100), 300 < £ < 700,
5sin(kn/50) + 2cos (k7/100), 700 < &< 1000

* set the weighting constants A = 3,u = 1, the simulation results are shown in Fig. 2

().

- . Sy

'

800 1000 Y0 2000 400 600 800 100]6
(a) Tracking performance (b) Control input
) Fig. 2 Simulation results for the MFLAC of Example 2

If we set the weighting constants A= 1,# =1, the overshoots are bigger than th:
Fig. 2,and the transient responses are a little faster. If we set the weighting constant:
1,42 = 1, the system diverges. The simulation results are omitted.
-7 Conclusions

In contrast to other adaptive control schemes,the features of this new typed :
control technique are as follows :‘First ,the proposed MFLAC scheme only use the 1/C
controlled system. No mathematical model and structural information of controlled

are needed,which implies that no unmodelled dynamics exists. Second ,the MFLAC r
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nism does not require any external testing signals and any training process,which are neces-
sary to the nonlinear system adaptlve control by usmg neural networks Third, the scheme
proposed is simple and can be easﬂy used ,and has minimum computatxonal burden and strong
robustness. Finally,all the results of this paper can be extended easily to the MISO and MI-
MO nonlinear cases. There are some reasons to believe that the same methods can be used
successfully in practice. Hence they should find widely applications in many areas of industri-
al process control.

Further works should focus on the stablhty ana1y51s
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