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Abstract: An adaptive finite time sliding mode control design scheme for a family of uncertain
nonlinear systems with parametric uncertainties and unknown nonlinearities is presented by intro-
ducing slow and fast switching lines. The backstepping approach is used in the adaptive sliding
mode control scheme. The global stability is guaranteed under the scheme developed and the sys-
tem state reaches the origin in finite time. Simulation results are presented to show the effective-
ness of the scheme.
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71 Introduction

Adaptive control of nonlinear systems in parametric-strict-feedback form can be solved
by employing the well known backstepping approach™ ™. A common assuinption in the back-
stepping procedure is that all the nonlinearities are known. This assumption can be relaxed
for the systems in which the nonlinear uncertain dynamics satis{y the triangular bounds con-
dition®, ‘

Sliding mode control systems have been studied extensively and used in many applica-
tions. Recently ,the sliding mode control using the backstepping approach has been dealt with
for the uncertain linearizable nonlinear systems®’”), This combination enables generalization
of the backstepping approach to more general nonlinear systems. Traditional switching mani-
folds are usually linear hyperplanes which guarantee the asymptotic stability. And the speed
of convergence is slow in the small neighbourhood of the origin. Advanced industrial applica-
tions sometimes require to realise the accurate and fast tracking in finite time,for example,a
position and its velocity of a robotic manipulator is required to reach the target in finite time.

In this paper,we develop an adaptive finite time terminal sliding mode control design us-
ing the backstepping approach for the nonlinear uncertain systems. The second order uncer-
tain nonlinear systems will be used to inform the discussion. Twa switching lines, the asymp-
totic switching line (ASL) and the terminal switching line (TSL) ,are used in order to give
better convergence performance. The terminal sliding mode control proposed in [ 8] which ex-
hibits finite time convergence is realised. This is in contrast to the conventional linear hyper-

plane switching manifolds which guarantee asymptotic convergence.
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2 Control Design for Second Order System
We firstly discuss the finite time control design for the second order nonlinear systems
with a specific structure. This design will be used in the successive sections.
Consider the following second order system
z, =z, + 0T (D8 (x)),

Ty == a1 >, — GQT; + U, D)

0,(t) =— z;$(x1)
where ¢, (x,) ,a, and a, are known, $,(x;) is continuously differentiable with respect to z; and
satisfies || ¢, (x) || = Oz, |9) 9, (0) = 0,a > 0.

The control target is to achieve finite time ASL A,
convergence. The terminal switching line (TSL)
can be used for this purpose™. From Fig. 1, o0ne TSL
can see that the convergence speed near the origin 2
is greatly improved in comparison to the asymp-

totic (linear)switching line (ASL). However,the

convergence speed in the TSL is slower when far 4 i
away from the origin. This inspires us to combine o*
these two switching lines together to achieve

fastest convergence by taking advantage of their

different convergence performances.
For the system (1),we denote the ASL as
5 = 2, + Az, : 2 Fig. 1 Phase plane portrait
and the TSL as
S, = x5 + Aal?, (3
where 4,,4, > 0,p and q are odd positive integers and are assumed to satisfy
g<<p<<2q, a>(q/p).
For the system (1) to reach the ASL,the control law is taken as
u(t) =— A, (t) — 0] () (21 () + ayz, (@) + a,x, (1) — Ksgn(sp), K>0, (4)
such that the condition
s, =— K|s;] <0 (5)
is satisfied. This shows that the trajectory of the system (1) will reach the TSL s; = 0in fi-
nite time. In the sliding mode s; = 0, it follows from (1) and (2)that

*1:1 = Alxl + 6’1r(t)¢1(x1)v
. (6)
0, () =— z,$, (7).
Take a Lyapunov function as
V(a,,0,) = %;x%(t) + L0 0, Q)

The time derivative of V along (6) is V =— Azl () < 0, that is .

J;Ale(r)dr FV @ <V, ®
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which means that x, (¢) and 8, (¢) are bounded and z, (¢) will move toward the origin along the
ASL s;. = 0.
We then desrgn the controller to reach the TSL. As in the TSL s, = 0, we have

éz = 1'2 + %Aleqip)/ljxi =—q,x; — ATy T U -+ Z/lleq PP (g, + 0, @), (x)). 0
We select the controller
u() = ayx; + a;xy — %Aleqyp)/l’(l'z -+ 01(t)751(x1)) — Klsgn(szl ) ao

such that .
535 =—K,[s:]» ‘ ' v an
which shows that once x(¢) reaches s, = 0 ,it will stay at zero forever.

In the TSL s, = 0, from the system (1) ,it follows

= — Xal? + 0 (D (x1). a2
Now we illustrate how x; (#) reaches zero in finite time. Taking the Lyapunov function as
the time derivative of V (x,0,) along (1) and (12) is - -
7 = — Azt <0, : r A

This implies‘that x,(t) ,0,(t) are bounded and x, (¢) tends to zero. Since (g/p) < a, from the
assumption condition of $,(z,) , there exists a positive number M such that
EXOLAOIAEAOIIES Mlxl(t) [1+“ < M|z, ()| |2 @) | ¢ 72,
This implies that
O8O = 2 OO ) — A O
< Mz @) |7 — Az () <— M™ 277, (15)
where 0 << M* < A, — M|z, (@) |«=#/4, Here the choice of M* is easy due to A, > 0 and x,(£)
thending to zero. Because (¢ + p)/p < 2, from (15),it is casily proved that z; () will ap-
proach zero in finite time along s, = 0™, This ,together with z, = — A,z¥? and $,(0) = 0 when
= 0, implies that z,() =0 ikal(rt) — 0. Hence we conclude that along s, = 0 the state x(£)
erl reach the origin in finite time. ’ v
The next question is how to combine these two controllers together to give rise to a bet-
ter finite time controller. There is a singularity problem that has to be taken into considera-
tion ,that is, the TSL controller has the term z{*~ »/¢ gz, which,when x; = 0 but x, #~ 0 ,will
tend to infinity. To avoid this ,the ASL should be used to escape from the neighborhood of z-
= 0,2, 0. The sketch of the TSL and ASL is shown in Fig. 1 where for any fixed 6, (1), the
ASL s, = 0and the TSL s, = 0 will intersect at two points Q, and Q; . The switch scheme is as
follows. ' ‘
For an initial state that is far away from Q;,Q;, choose the ASL controller such that the
state x(¢) reaches s, = 0 first ‘then moves along s, = 0. There exists a moment #, such tha
z(t,) arrives at @, (or Q;) . That is the state x(¢) reaches the TSL s, = 0in finite time. Onc

() arrives at Q, (or Q,) , we switch to the TSL controller such that xz(¢) will reach the origi
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along s; = 0 in finite time. For an initial state which is close to the origin,say,the state x(z)
under the control law (4) hits the point @ ons; = 0 Wh1ch is located on the line between Q,
and Q, ,a simple strategy is to let x(£) reach @ , and then switch to the TSL controller such
that () from s, = 0 will reach s, = 0 in finite time. Hence it will reach the origin along s, =
0 in finite time. Observe that in the motion of z(#) froms; = 0 to 5, =0 started from Q" ,the
state z(2) does not cross the x,- axis because on the x,- axis when &, > 0 then z; >0 (or when
2, < 0 then 2, < 0.

~ Above analysis is summarized into the following theorem.

Theorem 1 For the system (1),if the switching lines are chosen as in (2) (ASL) and
(3) (TSL),and the controllers are designed as in (4) and (10),then the state x(¢) will reach
the origin in finite time. ‘
3 Control Design for Uncertain Systems

The family of the uncertain second order nonlinear dynamic systems is given by

o=, + O (x), 2, = 008,(x1,2) + Alx,t) + B(2)u, (16)

where 0, = 1,2) is unknown,but ¢, (x,) ,$,(x,,2,) ,B(zx) are known and |B(z) | = B, > 0.
Az,t) and ¢(x) satisfy » ‘ '

' k lA(x,t)I h(x), |$,(x)) = Oz, 1)
where upper bound function 2(x) is known and @ is és given in Section 2.

For system (16) the backstepping procedure is defmed as v

{21 =T, = a (z1,0,) 5

al (x, 36 ) =y 6T(t)¢1 (x1)9 al(t) = 21(t)¢1(11(t)) ’
where 8,(t) = 6,(t) — 0,,0,,p,q and @ are defined as in section 2, y(t) is generated by
y =— a1z — ay + v, 18

where v(z) will be chosen according to Theorem 1 so that onz; =0 the states z; (t) ,y(#) satis-

an

fy e S
5=y — W), y=—am —ay+o®), (19
and reach the origin in finite time. From Theorem 1,such a v(z) can be implemented.
From the transformation (17),the system (16) can be transformed into the following
form - . o
2 =2z, +y@ — 0Oz,
2, = 0§r¢z(x1,xz) + Alzst) + Bladu — y (@)

(20)
+ [0 @) 5 ](zz(t) +y+ 9T¢1(zl)) + 28] ()81 (=1). ‘
The adjusting law for unknown parameter &, is given by
6,(t) = 2o (2102). 2D

The sliding mode control «(2) for system (20) is defined as
B(x)ul(t) =— ﬁg(t)sﬁz(x“xz) — sgn(z,)[h(x) + 1] + 3'1(1‘)

- [0T(t) ](zz(t) + y(@®) — 21¢T(21)¢(21)
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— sgn(z, K, ” ¢z(x1axz) ” - Kzsgn(zz) ” ﬁf(t) %?51(21) ” s (22
: 1

where K, , K, are certain positive constants,and y(z) is given by (19). The performance of th
controller is analysed as follows : By an appropriate choice of K, and K, and using same manip-
ulation as done in Section 2,it is easy to see from (21) that
2,2, <— |2,]. (23.
Hence, z,(¢) will reach zero in finite time.
On z, = 0, from (19) and (20) we obtain
{Z} = y@) — I O (=), (24
y=—az; — ay -+ v(),
which is similar to (1). By means of Theorem 1,we can design v(¢) such that y(t) »21 (2) react
zero in finite time along the TSL y -+ 297 = 0.

By the definitions of 2,(¢),2,(¢) in the backstepping approach (17)’,it is easily seen that
once z;(¢) ,2,(¢) reach zero,x, (¢) ,x,(¢) will approach zero in finite time as well. Therefore al
the signals of the closed-loop system are bounded.

The above analysis is summarized into the following theorem.

Theorem 2 For the nonlinear uncertain dynamic system (16) in the parametric-strict -
feedback form,the sliding mode control law (22) enables the closed-loop system stable and
all the states reach the origin in finite time.

Note that the family of second order uncertain systems (16) represents a very broad
class of second order uncertain systems. In practice,as shown in [4],vehical active suspen-
sion is an example. By using the presented method,we can make the fluid flow to reach zero
in finite time. Another example is the dynamics of the n- joint robotic manipulators discribed
by the following equation

H(@)g + Clg,q) + G(g) =u + o(t), (25)

where g(2) is a n X 1 vector of joint angular positions as the system output; H(g)is ann X n

symmetric positive definite inertia matrix; C(q,q) is the n X 1 vector of Coriolis and centrifu-

gal forces; G(g) is the n X 1 vector of gravitational torques and «(z) is the control torques ;
o(2) is the input disturbances. We assume that the robot has uncertainties ,such that

H(q) = Holg) + AH(g), Clg,9) = Colg,q) + AC(g,9), G(g) = Gy(g) + AG(g),
(26)
where H,(q),C,(g,q) ,and Gy(q) are known; and H,(q) is a symmetric positive definite ma-

trix. Denote

o) = o) — AH(@)g — AC(g,9) — AG(g). @27
Substituting (26) and (27) into (25) yields
Ho(@)q + Co(qg,9) + Go(@) = u + p(z). (28)

In practice,usually H(g) is invertible and bounded by positive constant ,that is,there exist a
positive constant 8 such that |H(¢) | < 8. And

”C(q9q') I <a + a ”q |+ a I q H 2, |IG<Q) “ < B+ B “q H .
Hence it can be proved™ that
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lp@) | < b + b, gl + 2 lgll®. (29)
Let Hy'(¢) = B(g),and B(Q)u = v, then from (28) we have
g =— B(@)Ci(q,9) — B(q)Go(q) + v + B(q)p(). (&1

For the ith joint,the dynamical equation is

q; =— ZBij(Q>Coj<Q9(1.> - EBI'](CI)GOJ"(Q) - zBi]‘(q){o](t) -+ v, (31)
j=1 i=1 i=1

Let x, = g,z, = q. Since position ¢ and velocity g are measurable,equation (31) can be trans-
formed into a state observable system
Ty = Ty,
) n 7 R ’7_‘ (32)
Xy = ZBij<xl)Coj(-T1 3 Ty) — ZB;j(11)Goj(lf1) - ZB,’;‘(JQ)P,'([> + v
j=1 j=1

j=1
The control objective is to make x(z) track accurately the bounded reference signal y,(2),
¥2(¢) in finite time. Define error function € T T Xy T Yusen = Ty — Yy ,Where 2,5,y is the
J th components of x;,y; respectively ,then

€1 = €5

é;’z = ZBU<1’1)CO,'(-T17-T2) - Z;Bfl ()G, (xy) — ZB,'j(x1>Pj(t) - 3.’21(5) + v,

(33)
This system is a special case of 2 , . : . : r . r ;
system (16) ($,(¢) = 0), so we x,(7)
can design a variable structure 0\
adaptive control law v; as done in
Theorems 1 and 2 as well as u(¢) =2r x,(2) 1
= B(@)v(¢) to guarantee that %
en(t),e,(¢) reach zero in finite & -4
time, that is the completely
tracking can be implemented in i ]
finite time, which means as the
position reaches target, the velo 8
city vector tends to zero. Here a- . . . . ' ‘ ' . .
long the switching line, both the % b2 3 4 5 6 7 8 9 10

Time/s

sition and v i- . .
errors of the positio eloc Fig. 2 Time responses -

ty reach zero in finite time.
4  Simulation Results
The following system was considered in the simulation
ﬁ[:él &) = 2,() + 6,25 (),

2,(t) =— z, + 0,(x, )z, () + x5(t)) + exp (x)sin(a;2,) (2, (¢) -+ z,()) + u (@),
(34)

N
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The real values of 6, and 0, 400

were set to be §; = 5,0, = 300 i
3. The setting for the con- 200 |
troller was p = 5,9 = 3,a;

ey = 1.K, = 8,K, = 10 1
5. 4 *};Z 0

Fig. 2 shows that the 0_100 |
system  states 218 ,

—200- .
z,(¢), are bounded and
reach to zero. Fig. 3 depicts —300 1
the bounded control law  —400 .
u(2). Fig. 4 illustrates the = _ ), L Time/s
adaptation of adaptive pa- 8 9 10
rameters 0, () and 8,(2).
5 Conclusion 18 —

In this paper,an adaptive 16} _ .
sliding mode control scheme 14k v |
has been proposed for the sec- ,
ond order uncertain nonlinear » 21 ]
systems with parametric and %10' ]
dynamic uncertainties.  The & gH Theta2 ‘ .
ASL and TSL have been used 6-[ |
to give rise to a fastest con- f Thetal
vergence performance. Simu- i 1
lation results have been pre- 2 o 1
sented to show the effective- 0 , : . . - . . . [Time

0 1 2 3 4 5 6 7 8 9 10

ness of the approach. . L
PP Fig. 4 Parameter estimation
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