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Abstract: This paper proposes a novel model-independent robust adaptive control strategy'for
trajectory tracking of robot manipulators with uncertainties ,in which the only information required
in establishing the strategy is the degree—of—freedom(DOF) and output state of the system. It is
shown by theories and simulations that uncertain effects such as frictions and external disturbances
or unmodelled dynamices can be eliminatated and global exponential stability (GES) or global uni--
form ultimate boundedness (GUUB) stability can be guaranteed. Furthermore,we also give a mea-
sure of the transient tracking error performace.
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1 Introduction ;

Most of the existing adaptive controllerst!! are model-based , which require very complex
computation especie_llly for manipulators with more than two jointé and can’t Wafrant gllobal
stability in the presence of effects of external disturbances or ﬁnfnédelled dynam1cs Alfhough
in recent years some model—independent controllerst* have been presénted,they can‘ only
achieve global or local UUB and their control structures are also complicatéd.

In this paper,a novel robust adaptive control strategy consisting of a linear time-invari-
ant PD part and a PD part with adaptive gains is proposed. The only information required in ‘
establishing the strategy is the DOF and output state of the system;so it is rather simple and
completely model-independent. It is shown by theories and simulations that with this strategy
uncertain effects such as frictions and external disturbances or unmodelled dynamics can be
effectively compensated and GES or GUUB can be warranted.

2 Structure Properties of Robot Dynamics ,

Consider the following 7 -link rigid revolute robot dynamics described by a second order
nonlinear differential equation:

M(q)q + H(q,9) =,
H(g,9) = C(q,q)q + G(@) + Fug + F (@) + 1.(q,q.2)

where 7is an n X 1 vector of applied joint torques, ¢(z) is an n X 1 joint variables, M(g) is an

ey

n X nsymmetric and positive definite inertia matrix, C(g,¢)¢is ann X 1 vector of centripetal
and Coriolis terms, G(q) is ann X 1 vector of gravity terms, Fyis ann X n diagonal matrix of

dynamic friction coefficients, F,(¢) is ann X 1 vector of static friction terms,and 7,(q5q,t) is
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ann X1 vector of external disturbances or unmodelled dynamics.
Remark 1 In this paper,we relax the restriction on external distanbances or unmod-
elled dynamics and follow the assumption of [2],namely
I talgsg:d) | <co+eallgh +ellal +ellgh?+ellgl? (2
where ¢;,¢ = 0,1,2,3,4 are unknown positive constants. This assumption contains a broader
class of external disturbances or unmodelled dynamics.
The robot dynamics (1) have the following structure properties that are useful in the
subsequent theoretical proofs.
Property 1t 2"[M(g) — 2C(g,¢)Jx =0, VY x € R ' (3)
Property 2 The dynamic equation(1) can be equivalently expressed as follows
M(g)s + Clg,q)s =t — AA,
DA = M(q)[éd — ae] + C(g,9)[qa — ae] + G(q) + Fug + F.(¢) + 7.(q,q,1).

where e =g — q455 = e + ae,ais a positive constant, ¢4,94,g,are given continuous and bound-

4

ed trajectories ,AA represents the lumped nonlinearity and uncertainty of the system,it can be
shown that
oAl <&E+6IXI+&1X]2< ép. (5)
where X = [¢",e" ], o =1+ | X || + [| X || 2,6 = max(§,,,,6,),60,€,,€, denote some un-
known positive constants, § is a concentrated restriction parameter of upper bounding on
lumped nonlinearity and uncertainty of robot and pis an enveloping function of lumped uncer-
tanties of robot. For the details,see [3].
3  Robust Adaptive Controller Design
’ Following the same spifif and utilizing a similar framework as[2,3],the controller can
be designed'és the following :
T=—ke — ke — k(t)s, where s=¢é -+ ae, k, = ak,, (6)
' (ép)?

k() = ————
Eollsl +&@

where & =— 7., £(0) >0, (D
£ = &@WE&+7.p s, where ¢ =— 7, (0) >0, (8)
where 7,,7,,7;,k, and &, are scalar positive constants, £(¢) is a time-varying filtered error
feedback gain.
In order to analyze the stability of the proposed control system, we first introduce a
Lemma,and then establish a stability theorem of the whole system.
Lemma Let V(x,z) be a Lyapunov function candidate for any given continuous time
system with the following properties;
Az <V, <A lz]l* V (@, €R XR,
Viz,t) <— A |z || ? + eexp(— Bt), V. (x,t) € R* X R,
where A,(i = 1,2,3),eall are positive constants.
1) If B> 0 ,then the system is GES and the state z(¢) can be bounded as;

(9
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1

Zexp(— At) —{——;t—exp(m At)]f, - A=A,
1

A,
[AT | 2(0) |

Iz <

vofm

A €
[f | (0 [| *exp(— A) + m[exp(“ Bt) — exp(— At)]] , A B

(10)
2) If B = 0, then the state x(z) is GUUB in the sense that

Bor

A
Izl < [r |20 [ Pexp(— 20) + £ [1 — exp(— At)]] an

where A = A;/4;, exp( ) denotes the natural logarithm exponential.
Proof Straightforward application of the Theorem 1 of [5] leads toithe proof.
Theorem 1 For the robot system described by (1) ,under the control of (6) ~ (8),the
global exponential stability is guaranteed.
Proof Select the Lyapunov function
V =0.55"M(q)s + e"k,e + 0.5Y7'&
=0.52"Pz, where £ = § — &,z = [¢,¢,8]7,

< 2k, + &M oM 0O : 12
P = aM M 0
0 0 73!
By the Rayleigh principle,we have '
0. 54min (P) || 2 | * <V << 0. 520 (P [ 2 || % A

where Ay (¢) 5 An,(+) denotes the operation of taking the minimum eigenvalue or maximum
eigenvalue ,respectively.

The time derivative of V along the tracking error model(4) is given by

V<—klel”—akllell?—r@ |s]*+ [s] -
Substituting (6)~(8) and making use of Property 2,we have

V<—kflell?—=ck,llel?—.0. 5678 + 0.5¢(0)7; E%xp(— 7,t) -+ & (0)exp(— 712)

<= 2'Qz + 2eexp(— 7't), € = max(0.5¢6(0)75'6%,6,(0)),” = min(¥;,7,) k

<= A (Q) [ 2 [| 2 + 26'exp(— 7'2), Q = diag(ak,,k,,0. 56,75 1).

| AA || — 7788, (14)

(15)
Using (13) and lemma,we can show the whole system is globally exponentially stable.
Remark 2 Strictly speaking, Theorem 1 can’t conclude that the whole system is expo-
nentially stable,since 4., (Q) = 0. 5¢,(0)75'exp(— Y,¢) — 0 as ¢ — oo, while we can ensure
that the entire system is globally asymptotically stable,i.e. || X | — 0asz— oo, the details
of proof will need theorems of [7],omitted here for brevity. But from the engineering point
of view,in a finite interval. the norm of system state | z || decays to zero exponentially,in
this sense,the whole system is exponentially stable.
Remark 3 The so-called o-modification™ used in the adaptation law (8) is to avoid the
parameter drift or integral windup due to unmodelled dynamics and disturbances and to en—>

hance the robustness of the system.
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Remark 4 If all the parameters of robot dynamics are exactly known,namely,if we may
determine the quantity § exactly,the adaptation law (8) is not needed. We can substitute the
true parameter £ into control law and the strictly global exponential stablity is warranted .
But the bound of € calculated by hand is always conservative in general ,and the conservatism
of control will cause saturation of actuators,by learning this bound on-line, we will obtain
relatively satisfactory results.

Furthermore,if the parameters 71,7, of (7) (8) are set to zero,we can conclude that the
whole system is GUUB with the following theorem.

Theorem 2 For the robot system described by (1) ,under the control of (6)~ (8),and if
the control parameters 7;,7, are set to be zero,the global uniform ultimate boundedness is
guaranteed. A

Proof Using the same Lyapunov function V as in Theorem 1,and with similar deriva-
tion,we have

V<~ 2@ | z|?+¢,
{e’ = 0.56,(0)7;'8 4 €,(0), Q = diag(ak,,k,,0.5&(0)7;1).

By using (13) and lemma,we can conclude that the whole system is globally uniformly unlti-

(16>

matly bounded,and the boundedness is given by

Aax (P) ¢ I
el < [ 325 120 1 Pexp (= o) + =11 = exp(= 201 ] 14 = 240 @/Ame(P). D)

It is clear that the ultimate bound is determined by the ratio € / (Al (P)) and that the
exponential convergence rate of || z || to the bound is specifed by A which may be a measure
of tracking error performance.

4  Simulation

A two-degree-6f-freedom revolute robotic manipulator is simulated to test the proposed
robust adaptive control law. The dynamics model and its parameters can be found in [6].

The joint friction and external disturbances (unmodelled dynamics) can be chosen arbi-
trarily as ,

F, = diag(5,5), F.,(¢) = 3sgn(q), 7,(q;,q,,t) = [q.g:5int  g,g,cost ™.

The desired trajectories are given by |

ga = sint + 0. 1sin3z — 0. 2sindz, g4 = 0. 1sin2¢ — 0. 2sin3z + 0. 1sin4z.
The initial states of the“systemv are set as k
0:1(0) = ¢,(0) = 0.1, ¢q;(0) =g,(0) =0, &) =0.
The control parameters are chosen as follows
€, (0) = 10. §(0) = 0.1, 7% = (0.01,0.01, 100>, A, = 500, a = 10.

A four-order Runge-kutta method with a sampling interval 1ms is used to solve the non-
linear differential equations numerically. The simulation results are shown in Fig. 1~4.

Remark 5 In simulation,we find that if the control parameters are not chosen proper-
ly,the control torque may be chattering in spite of guaranteeing exponential tracking. From

control law (7) ,we can show when time tends to infinite the control law may become discon-
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tinuous. Furthermore the computational accuracy or quantization error may be another rea-

son,so we must choose the Control parameters deliberately.

5 Conclusion

A novel robust adaptive controller for trajectory tracking of robot manipulators with un-
certainties whose upper bounds are not assumed to be known is proposed ,which is model-in-
dependent and the only information needed in setting up the control law is the DOF and the
output state of system. It is shown by theories and simulations that uncertain effects such as
frictions and external disturbances or unmodelled dynamics can be eliminated and GES or

GUUB stability can be guaranteed.
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