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Abstract; This paper focuses on analysis and synthesis of robust H.,. control for linear time-varying uncertain dynamic
systems with delayed state. A dynamic output feedback controller is presented to quadratically stabilize the plant and reduce the
effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties. Two equivalent linear
time-invariant structural descriptions for the time- varying uncertain systems with delayed state are obtained to get the controller

gain matrix and the observer gain matrix.
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1 Introduction

Robust H,, control problem for systems with parame-
ter uncertainties has received a considerable amount of
attention in recent years. Several related results for delay-
free uncertain linear systems have been reported!!!. All
these research results require the condition that all states
of uncertain systems must be obtained, a natural question
is what additional requirements (if any)are needed to en-
sure stabilizability of the systems for admissible uncer-
tainties, when none of the states can be measured. The
study of robust stabilization for uncertain linear dynamic
systems with output feedback controller has been report-
ed in several literature(?) . The robust stabilization of un-
certain linear systems with dynamic output feedback
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based on the notion of quadratic stability also has been
studied by some researchers!?! .

Recently, H,, control problem for systems with time-
delay has also been studied(4] . However, few studies of
robust H,, state feedback control problem for time-delay
systems with parameter uncertainties have been reported,
let alone studies on robust H. output feedback control
problem for time-delay systems with time-varying pa-
rameter uncertainties. In this paper, attention is focused
on the robust H,, output feedback control analysis and
synthesis of linear time-varying uncertain systems with
delayed state. The analysis and synthesis of robust H,,
control problem addressed here are to design a linear
time-invariant dynamic output feedback control law such

) and the Natural Science Foundation of Zhejiang Province
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that the closed-loop system is quadratically stable with an
H,, norm bound constraint.

2 System description and definitions

Consider a linear time-varying uncertain system with
delayed state,

x(t) = (A + DA(2))x(t) +
(A, + A4, ()2 (2 - 7) +
(B +AB(£))ult) + Dyw(e), (1)
y(1) = Cx(1), z(t) = Dya(e),
x(t) = (1), t€[-17,0]
where x () € R"is the state vector, u(t) € R™ is the
control input vector, y(t) € IR’ is the output vector,
w(t) € R? is the disturbance input vector which belongs
to L,[0,%),and z(t) € IR is the controlled output
vector, AA(t),AA;(t) and AB(t) are real-valued ma-
trices whose elements are continuous functions with re-
spect to time ¢ , representing time-varying parameter un-
certainties in the system, ¢(t) € C*[ - 7,0] is a real-
valued continuous vector initial function .

Assume the nominal systems of (1) are stabilizable
and detectable . Suppose the time-varying uncertain struc-
tures are given by,

[AA(2) AB(t)] = HyF(1)[Ey E,],
AA((t) = HF(1)E,
where F(t) € R is an unknown matrix function satis-
fying the following inequality,
F'(t)F(:) < 1. (3)
To facilitate further description, we propose some nec-

(2)

essary definitions. The following Definition 1 can be re-
garded as an extension of existing definition in [5] to
output feedback case.

Definition 1 The system of (1) (with u(¢) = 0,
w(t) = 0) is said to be quadratically stable if there exist
a positive definite symmetric matrix P and a positive
constant ¢ such that for any admissible uncertainty the
derivative of a Lyapunov function candidate

V(x,t) = #7(0)Pe(0) + | 7(0) Re(0)do

-
with respect to time ¢ satisfies

Ve-alxl, (4)
for all pairs (x,¢) € R” x R. The system of (1) (with
w(t) = 0) is said to be quadratically stabilizable via

linear dynamic observer u = — Kx (where % is the ob-

335

server state vector which will be defined in the following
part, introduce the observer error e () = x(¢) - x(2))
if there exist positve definite symmetric matrices P, and
P, and a positive constant o such that for any admissible
uncertainty the derivative of a Lyapunov function candi-
date

V(iz,e,t) =

BLONFO) i S
j;_r[xT(G) eT(ﬁ)][%l 82”:((3))](10

with respect to time ¢ satisfies

(5)

X

dV/dt < - «a [ ]
€2
for all pairs (x,e,t) € R* x R* x R.

Definition 2!  For a given constant ¥ > 0, the
uncertain system of (1) (with u(z) = 0) is said to be
quadratically stable with an H,, norm bound 7y if there
exists a linear time-invariant dynamic output feedback
control law, such that for any admissible time-varying
parameter uncertainty the following two conditions are
satisfied: a) The system is quadratically stable; b)Sub-
ject to the assumption of the zero initial condition, con-
straint || z(¢) |, < 7 | w(¢) ||, is satisfied. The sys-
tem of (1) is said to be quadratically stabilizable with an
H, norm bound ¥ via output feedback if there exists a
linear time-invariant dynamic output feedback control
law such that the closed-loop system satisfies both condi-
tion a) and condition b) .

In this paper, we consider the following linear robust
H.. output feedback control law

u(t) = - Kz (1),

i) = A (t) + Ajx(t - 7) + (6)
Bu(t) + L(y(t) - y(t)),

y(1) = Gi(z)
where x(¢) € IR™ is the observer state vector, y(#) €
IR" is the observer output vector, K is controller gain ma-
trix, and L is observer gain matrix such that the closed-
loop system is quadratically stable with a given H,, norm
bound constraint || z(¢) ||, < 7 | w(t) || 5.
3 Robust H,, control analysis

In this section, we present sufficient conditions for the

systems (1) ~ (3) to be quadratically stabilizable Wi}
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an H, norm bound ¥ via linear dynamic output feedback
control law (6) .

We first introduce some useful lemmas.

Lemma 1 Suppose that x and y are vectors with
appropriate dimensions, then,

25Ty < exTQx + e 'yTQ 1y
where ¢ is a positive constant and () is a positive definite
matrix with appropriate dimension.

Lemma 2!8! Let A, D, E be matrices of compatible
dimensions. Then the following statements are equiva-
lent;

a) A is a stability matrix and || E(sI - A)™'D || »
< 1.

b) There exists a positive definite symmetric matrix X
> 0 such that

A™X + XA + XDD'X + E'E < 0.

The quadratically stabilizable condition of the system
(1) is derived as follows.

Theorem 1 For the system (1) ~ (3),let R;, R, €
R"*" be given positive definite symmetric matrices, sup-
pose that the disturbance input is zero for all time and
there exist two positive definite symmetric matrices P,
and P, satisfying the following matrix inequalities re-
spectively,

S; =(A - BK)"P, + P,(A - BK) +
P.(2HyHY + H\H + A;R{'AT + BB P_ +
(Ry +2E3E, + A Eo - E\K)"(E, - EK)) < 0,
(7)
S, =(A - LC)'P, + P,(A - IC) +
P,(2HoHy + H H + A|R;'AT) P, +
(R, + K'K + 2K"ETE\K) < O (8)
then the closed-loop system of (1) and (6) is quadrati-
cally stabilizable .

Proof Denote », = x(t -~ v) and e, = e(t - 7),

omit independent variable ¢ , we get,

% A - BK BK
[é]={[ 0 A—LC]+
AA-ABK ABK1\[ #] [A1+841 O,
[AA—ABK ABK] }[ e]+[ A4, All[e,]'
The Lyapunov function candidate for this system is

chosen as follows,
Vie,x,t) =

Vol. 16

[«T eT][ I;‘"‘ ;)0] [ :] +

LT L o

0 e(9)

By using Lemma 1 and rearranging, the derivative of
(9) with respect to time ¢ is obtained,

V< 67(6)S6(1) < Amu(S)ET(1)E(2)

where £(t) = [x7(z) eT(+)]%,S = diag(S,,S,)

and A, (S) denotes the maximum eigenvalue of matrix

S. Therefore inequality (5) is satisfied with o =

- Amx(S) > 0. Thus the quadratic stabilization of

closed-loop system of (1) and (6) follows easily from

Definition 1. Q.E.D.

The main result of this section is the following theo-
rem.

Theorem 2 For the system (1) ~ (3), for given
positive constants ¥> > A > 0, let Ry, R, € R™" be
given positive definite symmetric matrices, suppose that
there exist two positive definite symmetric matrices P,
and P, satisfying the following matrix inequalities re-
spectively,

T, =(A - BK)"P, + P,(A - BK) + (R, + 2EXE, +
2(Eq - E\K)"(Ey - E\K) + DiD;) +
P.(2HoHj + H H] + A;R7'AT +
BB" + (y* - A)7'D,D))P, < 0, (10)

T, =(A - LC)"P, + P,(A - LC) + P,(2HyH} +
H H{ + A\R7'AT + 27'D, D)) P, +
(R, + KK + 2K"ETE,K) < 0 (11)

then the closed-loop system of (1) and (6) is quadrati-

cally stable with an H,, norm bound 7.

Proof

| z(¢) Il , < 7 | w(¢) |, from Therorem 1.

From Definition 2, assume that x(¢) = 0,: €

[- r,0], consider the following index,

7= TG @(0) - Pt w(e)de,
0

From Theorem 1, the closed-loop system of (1) and

The proof suffices to prove the inequality

(6) is quadratically stable ,so we can conclude that for
any nonzero w(t) € L,[0, ) the following equality
can be obtained.

7= 7@ - a0 +
0
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B%V(x,?,t))dt - xT(W)ch(“’) -

e(o)Pe(®) - Uy - Vy (12)
where V(x,e,t) is defined in (9)and U, , V., are de-
fined as follows.

Obviously, the following four inequalities are true.
0< 2" (®)Pa(®) < »,

0< e (®)Pe(®) < o,

Uy = limjl 57(8)(R, + 2ESE,)x(8)d = 0,

t>®oJ T
t
Ve = limj e'(8)R,e(8)dd = 0.
ol
From the proof of Theorem 1, (12)becomes,
J SJ (2%2 = P w + x7S;x + e'S,e +
0

25"P,.Dyw + 2¢"P,Dyw)ds.
Using the following inequalities
25"P.Dyw < (v* - 2)~'4"P,D,DTP x +
(r* = Dww
2¢"P,Dyw <A~ 'e"P,DDTP,e + AwTw
and from (1), (10) and (11), we can easily get J <

Jo (xTTlx + eTTze)dt < 0. Therefore || z(t) ||2 <

Yl w(s) |, ,and thus we completes the proof.

Q.E.D.

Based on the above results, we present the following
two conditions:

Condition 1a The closed-loop system of (1) and
(6) is said to satisfy Condition la if there exist an con-
troller gain matrix K and a positive definite matrix P, for
a constant ¥ such that (10) holds.

Condition 1b  The closed-loop system of (1) and
(6) is said to satisfy Condition 1b if there exist an ob-
Server gain matrix L and a positive definite matrix P,
such that (11) holds.

Remark 1 Using Theorem 2, it follows immediately
that any system satisfying both Condition 1a and Condi-
tion 1b will be quadratically stable with an H,, norm
bound 7. Therefore both Condition 1a and Condition 1b
are sufficient conditions for the closed-loop system of
(1) and (6) to be quadratically stable with an H,, norm
bound y .

4 Robust H,, control synthesis
In this section, we will present a design procedure for

controller (6) such that the closed-loop system of (1)
and (6) will be quadratically stable with an H,, norm
bound 7 .

From Lemma 2, Condition 1a is equivalent to the fol-
lowing statements :

Statement a For a new linear time-invariant sys-
tem

x(t) = Ax(t) + Bu(t) + D w(t),

2(1) = Bax(1) + Eau() =
where
D, = [2Hy, H,, AR, B,(¥* - 1)72D,],
RI” 0
L D, 0
(Eq Epl = VBE, 0
V2E, +2E,
with a memoryless state feedback control law
u(t) = - Kx(z),

the closed-loop system is asymptotically stable and satis-
fies the H,, norm bound constraint
| (Ey - EqK)(sI - A + BK)'D, || o < 1.

Thus Condition 1a can be converted into a linear time-
invariant H,, control problem.

Let s = rank(Ey)and let U, € R('”“Zj)“, V, €
R°*™ be any matrices such that

E, = U,V,, rank(U,) = rank(V,) = s.

Next let &, € R(™*)*™ be chosen such that

OV = 0,(®,=0ifs = m). (14)
Define
B, = Ve(V V)" (UU) (Y V)V,

Now we are ready to state one main result in this sec-
tion to get the controller gain matrix K.

Theorem 3 For a given constant Y2 > A > 0, let
@, € R™ )%™ be chosen such that (14) is satisfied and
Q. € R™" be a given positive definite symmetric ma-
trix , then the uncertain time-delay system (1) with con-
troller (6) satisfies Condition 1a if and only if there ex-
ists a positive scalar ¢, such that the algebraic Riccati
equation

(A -2BE,ETE,)"X + X(A - 2BE,ETE,) +
XM X + Q.+ €0, =0

where
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M, - D,DT - BE,B" - L BaTO B,

D,DT = 2HyHy + H HT + A\R{'AT +
BB™(y* - )7'D,\Dj,
Q. = R, + DID, + 2EJE, +
2E{(I - 2E\E E})E,
has a positive definite symmetric solution X. Further-
more, if such a solution exists, a suitable robust H,, con-
trol law for the equivalent linear time-invariant system
(13) is given by
u(t) = - Kx(t)
where

1
2e,

Proof Similar to the proof in [6] and omitted due to
length limitation.
Obviously , inequality (11) is equivalent to the follow-

K = (00, + 5,)B"X + 2E,ETE,.

ing inequality
PU(AT - CTLT) + (AT - CTLN)'P;! 4
(QHoHS + H HT + A\R;'AT + 27'Dy DY) +
P;'(R, + KK + 2K'ETE,K)P;! < 0.
From Lemma 2 and (15), Condition 1b is equivalent
to the following statements:
Statement b For a new linear time-invariant sys-
tem
x(t) =A"x(t) + Cu(s) + Dyw(t),z(1) =
E,x(t) (16)
where
D, = [RY* K" V2K"E{],
EY = W2H, H, R;V*A; 27°D]
with a memoryless state feedback control law
u(t) = - L™x(1),
the closed-loop system is stable and satisfies the H,
norm bound constraint
| Ey (sl - AT+ ¢*L™)-'D, || * < 1.
Thus Condition 1b can also be converted into a linear
time-invariant H, control problem.
Now we are ready to state another main result to get
the observer gain matrix L .
Theorem 4 For a given constant A > O,let @, €
R"™" be chosen to be any nonsingular matrix, Q, €
R" " be a given positive definite symmetric matrix and

Vol. 16

K € R™" is assumed to be obtained from Theorem 3

then the uncertain time-delay system (1) with controller

(6) satisfies Condition 1b if and only if there exists a

positive scalar €, such that the algebraic Riccati equation
AY + YAT + YMY + Q, + €,0, = 0

where

i, = Ry + K'K + 2K'EVE\K - -C"®}9,C,
Q. = 2HoH§ + H HT + A;R;'AT + A7'D, DY
has a positive definite symmetric solution Y. Further-
more, if such a solution exists, a suitable robust H,, con-
trol law for the equivalent linear time-invariant system
(16) is given by
u(t) = - LTx(t)

LT . ol CY.

where = 2.
Proof  Similar to the proof in [6] and omitted due to
length limitation.

5 Conclusion

The robust H,, output feedback control analysis and
synthesis are obtained for the linear time-delay systems
including time-varying uncertainties in system matrices
which do not need to satisty the so-called matching con-
ditions. Based on the notion of quadratic stabilization
with H,, norm bound and Riccati equation approach, suf-
ficient conditions for the solvability of the robust He
control problem are obtained to ensure not only the
quadratic stabilization but also the H.,, norm bound con-
straint of the closed-loop system. Two equivalent linear
time-invariant stractural descriptions for the linear time-
varying uncertain systems with delayed state are used to
construct linear time-invariant dynamic output feedback

controller.
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| A- B/D3'C, | B,- BD5'Dy, B, A; = 1, we get a unstable controller. Clearly we can get lower or-
S =| € - D, D;5'Cy | Dy - Dy D5 Dy Dy D3| = der (order less than 2) stable controller by taking any 1/3 < D, <
_DiC, — D5'Dy Dyl 1. For example if we take Q(s) = D, = 5/6, we have K(s) =

2 0 -1 1- (5s + 11)/(6s + 9), which is a 1-st order stable controller.

0o -1l-1 2 b) Compute reduced order H., controller.

2 H“(S) = (S+7)/(S+5),H12(S) =—4/(S+5),H21(S)
1 ’ 1 0 =3/(s +5),Hp(s) = (s = 1)/(s +5). Solve equation (15)
L 3 0 1 we get common zero: s = — 1, From equation (16) we have Q( -

Step2 Find (J, J') -loseless factorization:
In this case, m = 2,r = p = ¢ = 1. First, we solve (2) to get

1 0
aD, = [O 1] , then by solving two Riccati equations we get X

=mdm)=u ﬂ;mY=mam)=m ] = 0. T

we get (J, J') -loseless factorization:

-2 |-11
210 0O
@ = ,H =
(s) uld % (s) {
110 1

Step 3 Compute H,, controller.
a) Compute stable H,, controller.
From Theorem 2, take Q(s) = D, where D, is a constant

number (p = ¢ = 1). We have;: K(s) =
[1_31),, |- D, +2 ] ol

VA, =1-3D,.1 =D, =0,
-2+3D, | D, ¢ i 1EQLs) = Dy

1) = 2/3. Taking Q(s) = 2/3 we get reduced order controller

K(s) = 2/3, which is a zero-th order proportional controller.
Remark For the above plant, the controller designed by

DGKEF method in Robust Toolbox in Matlab is ( Q(s) = 0): K(s)

-2 3|1
= |: 0 1 2} . Cleary K(s) is unstable and its order is higher

0 20
than that of our controller.
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