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Adaptive Control of Nonlinear Discrete-Time Systems Using
Neural Networks and Least Squares Algorithm with Dead-Zone
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Abstract; Multilayer neural networks are used in a nonlinear discrete-time adaptive control problem. The weights of the
neural networks are updated by using least squares (LS) algorithm with dead-zone.LS algorithm has much superior rate of con-
vergence compared with gradient algorithm and 8- modification algorithm. For the adaptive control algorithm, we prove that;
1) all signals in the closed-loop systems are bounded;and 2) the tracking error converges to a bounded ball.
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1 Introduction

The idea of applying multilayer neural networks to
adaptive control of nonlinear continuous-time systems
has become a popular architecture. An important reason
is that the unknown nonlinear functions in the system can
be expressed as

fG+) = Z;@,f,-(') +e(),
where f; ’s are known functions, ¢(+) is the modeling
error. However, considerable research has been conducted
in the continuous-time systems, little about the use of
neural networks to discrete-time systems. As we know,
some results about discrete-time systems first appear in
[2].However, there is no stability proof given in [2].In
[3], authors presented a convergence result for adaptive
regulation using multilayer neural networks provided that
the modeling error is zero. This is a very restrictive as-
sumption. Because this may require the use of a very
large, or infinite, number of nodes for neural networks,
limiting the applicability of the technique. When the
modeling error is not zero, the updating rule must be
modified.In (4] and [5], authors use gradient algorithm
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with dead-zone and §- modification algorithm respective-
ly. However, the least squares (LS) algorithm generally
has much superior rate of convergence compared with
gradient algorithm and J- modification algorithm. There-
fore, the research into the nonlinear adaptive control us-
ing neural networks and least squares algorithm with
dead-zone is very important.

In this paper, LS with dead-zone algorithm is used to
estimate the weights of neural networks. We prove that;
1) all signals in the closed-loop systems are bounded;
and 2) the tracking error between the system output and
the reference output will converge to a bounded ball. We
obtain similar results using fewer restrictive assumption
compared with[4].

2 Problem formulation
In this section, we consider SISO nonlinear discrete-
time system discussed in [4].
y(k+1) = fo(+) + go()u(k - d +1),
(2.1)
where f; and g are unknown smooth functions of y(k -
n+ 1), y(k),u(k-d-m+1),,u(k-d),
y is the output, u is the input, d is the relative degree of



the system and g, is bounded away from zero, m,n,
and d are known, m < n.
To define the zero dynamics, (2.1) is converted into
a state-space form.We select the state variables
%, (k) = y(k —n+i),i=1,2,",n,

%, (k) = u(k-m-d+1i),i=12,m+d+1

Therefore a state space model of (2.1) is constructed as
x(k+1) = %,.(k), i =1,2,--,n -1,
2, (k + 1) = fola(k)) + golx (k) Hnymar (K,
%pyilk +1) = wppi(k), i = 1,2, ,m+d -2,
Xpemed1(k +1) = u(k),
y(k) = %,(k), (2.2)
where x (k) = (x,(k), ", %, (k) ;""" s %mynea-1(k)) . In
the case of d > 1, the future system outputs are needed
to be expressed in terms of elements of x(%). Notice
that x, (k + 1) = y(k + 1). Then

%,k +2) = folx(k + ) +

go(x(k + D)xppmar(k + 1), (2.3)

Replacing x(k + 1) in (2.3) by the right-hand side of
(2.2),we have

x,(k +2) = filx(k)) + g1(x(k)) %y manh).
By applying the same technique recursively, one gets

%, (k +3) = folw(k)) + g x(k)) %y mis(k),

w(k+d-1) = fao(a(k)) +
gd-—Z(x(k))xn+m+(l-l(k)-

Consider the state transformation

2y (k) %, (k) i
z2y neao1 (k) x,(k+d-1)
2Pl = 291 (k) - %1(k) -
\;sz(k) -xn+m(k) =
T(x(k)). (2.4)

It can be shown that inverse of (2.4),i.e., =
T-(z), provided go(x),"**,gs_2(x) are
bounded away from zero over the domain of interest. Af-
ter application of the transformation (2.3), (2.2) be-

exists

comes

2;(k +1) = z;,;1(k), i = 1,2, ,n+d -2,
2, ned-1(k + 1) =

Jar(x (k) + gaor(x (k) %y myar(k + 1) =
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Fuar(T(2(8))) + gaa (T (2(K)))ulk) =
F(z(k)) + 6(z(k))ulk),
zZi(k + 1) = z2,i+1(k), i = 1’2"”,m . 17

zl.n+l(k) - fo(x(k)z B
go(x(k)) r

21,31 (k) = fo(T7(2(k)))
go( T (2(k))) ’
y(k) = 21, (k). (2.5)
Since the nonlinear functions F(+) and G(-) in (2.5)

are unknown, we use multilayer neural networks to mod-

zZm(k + 1) =

el the nonlinear functions. Now, we are in a position to
formulate the problems under study as follows.
Control Objectives Determine a feedback control

u = u(x | @) and the updating rule for adjusting the
parameter @ (where O is the weights of a neural net-
work) such that;

i) all signals in the closed-loop system are all
bounded;

ii) the tracking error between the system output and
the reference output will converge to a bounded ball.
3 Adaptive control using multilayer neu-

ral networks and LS algorithm with

dead-zone
In this section, we first state our assumption on the
system,and then develop an adaptive control law based
on the neural networks.
Assumption 1 (The Minimum Phase Assumption)
The change of variables e; (k) = z;;(k) - ¢ trans-
forms (2.5) into
ek +1) = ey (k), i = 1,2, ,m -1,
— fo(T™' 0, e5(k) + €))
(T O, ex(k) + ©)) ~°
We assume that the origin of (3.1) is exponentially sta-

eQ,n(k+l) = (31)

ble,and there is a Lyapunov function V( e;) which satis-

fies
m1(€2(k))2 = V(ez(k‘)) = mz(ez(k))2»
V(ey(k + 1)) = V(ey(k)) <- a | ey(k) 12,

IV(ey(k))
dey(k)

in some ball B — R™ (see [4]).
In this paper, we consider three-layer neural networks
with p hidden neurons.

ﬁ(x(k)yw) =

< L1 e(k) | (3.2)
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m+n+d-1

> w4+ ;) = wh(x), (3.3)

Zp) wH (
i=1 j=1
where w; , w; and ; are unknown parameters to be esti-
mated, w depends on w;, w; and ;. In addition, in our
updating rule and convergence analysis, we need the fol-
lowing assumption: H is differentiable and there exists
constants M > 0 and N > O such that
| H(x,w) i< M,
JH(x,w) Vx€ (-, + ),
{ dw <N,

For example, H(x,w) is often taken as Gaussian
function, hyperbolic tangent function etc.
Rewrite the system in an input-output form as
y(k+d) = fu1(x(k)) + gar(a(k))ulk).
(3.5)
If f and g are known, then the feedback control is de-
fined as

(3.4)

:_:[4._1(95(_15)) + r(k)
gd_l(x(k)) ’
where r (k) is the desired output. Since f and g are un-
known, we replace them by the neural networks defined
by (3.3) respectively. System (3.5) is modeled by the
neural networks
#Ck +d) = Jy i (w(k),w) + gay(x(k),0)u(k),
(3.7)
where (-, +) and g(+, +) are three-layer neural net-
works with p and ¢ hidden neurons respectively. The re-
sulting control law is
~ fas(x(B), w(k)) + r(k)
Ba1(x(k),v(k))
where w( k) and v(k) denote the estimates of w and v
at time k,f;_;(x) = F(z) and gs-1(x) = G(z). Be-
cause the set {2,_;(x(k),v(k)) = 0} may have a pos-
itive probability, in order to avoid zero divisor, we use
the following control law
u(k) =
B ~ Fai(x (k) w(k)) + r(k)
a1 (x(k),v(k)) + Ssgn(gy_(x(k),v(k))’
(3.9)

u(k) = , (3.8)

a *
gk - d+1) = [2HELLS

L

@(k)] .

where & is an arbitrarily small positive constant, and
() {

To better define the error, rewrite (3.5) and (3.6) as
y(k+1) =f3(x(k-d+1)) +
ga1(x(k-d+1))u(k-d+1)
(3.10)

1, x =0,

-1, x <.

and
Pk+1) = fu(x(k-d+1),w) +
Ba-i(x(k -d+1),0)u(k-d+1).
(3.11)
The estimated system output is
y(k+1)" =
Faor(xCh = d + 1), w(k)) +
(Bao1(x(k = d +1),0(k)) +
Osgn(gy_1(x(k —d +1),v(k))))u(k - d +1).
(3.12)
The error e(k +1) " is defined as
e(k+1)" = y(k+1)* —y(k+1). (3.13)
The estimate @ (k) for ® = [wT, »T]Tis updated by the
recursive LS algorithm with dead-zone
Ok +1) = O(k) + a(k)b(k)P(k)p(k - d +1) -

(c)j;f_](_:t(k -d ¥+ ])J_U(k))]r
dw (k)

(y(k+1) - y(k+1)"), (3.14)
P(k+1) = P(k) - a(k)b(k) -
l P(k)p(k)p(k)"P(k), (3.15)
P(O) = aol,
a(k) =
. 1
1+b0(k)e'(k-d+1)P(k)e(k -d +1)°
(3.16)
B - {B, if a(k) 1 e(k + 1)* | = ady,
0, if a(k) | e(k +1)* < ady,
(3.17)
(3.18)

(?(g.,-ul(x(k -d+1),v(k)) + Osgn(ga 1 (x(k - d +1),0(k)))) '

dv(k)

Where ay is a positive constant, the positive constants d,,,
a > 1,and f3 are properly chosen.

)'u(k =)

Remark 3.1 Assumption 1 in [4] is not needed by
properly modifying the control law. & can be chosen an



358 CONTROL THEORY AND APPLICATIONS

any small constant.

Remark 3.2 Assumption 3 in [4] is justified by
the approximation results of [6] . Therefore given a posi-
tive constant € and a compact set S ¢ R™*"*¢-1, there
exist coefficients w , v such that

max | fd_l(x,w) —fi(x) Ig e,
»CS (3.19)

max | Ba1(x,v) - ga1(x) I €.

4 Performance analysis
In this section, we will give main results.
Theorem 4.1 Let| r(k) I r” foralk = 0.
Given any constant o > 0 and any small constant d,
there exist positive constants p; = p;1(p,7"),p2 =
p2(psr*),e* = e*(p,dg,r*) and A™ = 2" (p,
dg,r") such that if (3.19) holds on S o B, with e <
e , Assumption 1 is satisfied on B, , | x(0) I < p,and
| ®(0) |< A < A*. Then, the adaptive controller con-
sisting of (3.9),(3.10) and (3.12) ~ (3.18) guaran-
tees the following properties:

i) 1 ®(k) | are bounded,and | O(k + 1) — O(k) |
will converge to zero, where | * | denotes Euclidean
norm;

i) fy(k)} and {u(k)} are bounded, for all k;

iii) The tracking error between the system output and
the reference output will converge to a ball of radius
V ad,, centered at origin.

Proof We prove Theorem 4.1 by 5 steps.

Step 1 The dynamics associated with z; are

20,0k +1) = z;,;,(k), i = 1,2, ,n +d -2,

21, nrar1 (k) = F(2(k)) + G(z(k))u(k). (4.1)
The last equation can be rewritten as

21,01 as1 (k) =

F(z(k)) + 6(z(k))u(k) =

F(z(k),w) + (G(2(k),v) +

8sgn(G(z2(k),v)))ulk) + w (k) =

F(z(k),w) - F(z(k),w(k)) + (G(z(k),v) +

Ssgn(G(2(k),v)))u(k) — (z(k),v(k)) +

Ssgn(G(z(k),v(k))))ul(k) + w (k) + r(k) =

r(k) + wi(k) + wy(k),

(4.2)
where F(z(k),w) = fi_i(T(z(k)),w)

and

G(2(k),v) = g4.(T 1 (2(k)),v),
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wi(k) =(F(z(k)) - F(z(k),w)) +
(6(z(k)) - (G(2(k),v) +
dsng( G (2(k),v))))ulk),
wy(k) = (F(z(k),w) - F(2(k),w(k))) +
((€6(2(k),v) + dsng(G(z(k),v))) - -
(G(2(k),0(k)) + Ssng(G(z(k),v(k))))ulk).
(4.4)

(4.3)

Define
e; (k) = z;(k) = r(k-n-4d+ i). (4.5)
Then (4.2) can be reexpressed as
e;(k+1) = el,,-,,l(k), i =1,2,>,n+d-2,
erneac1(k) = wi(k) + wy(k). (4.6)
Define
e2i(k) = Zzi(k) - C. (4.7)
Then the dynamics associated with z, are transformed in-
to
ey(k +1) = ez’i+1(k), i=1,2,,m-1,
erm(k+1) = uyp_g(k) - c. (4.8)
Thus, (4.6) and (4.8) is the new state space represen-
tation of the closed-loop system.Denote
el(k) = (ell(k)9""el,n+d—l(k)),,
ez(k) = (621(k),"',€2,m(k))’,
R(k) = (r(k-1),,r(k-n-d+1)).
This step is mainly used in the proof of Step 4.
Step 2 Consider the set
€
Q= {(92): lerl<s p1s l &2l #2},(4-9)
where p; and p, will be chosen in step 3. Since z(k) =
e(k) + [R(k) C) and x(k) = T-'(z(k)), we can
conclude that as long as e(k) € Q,then x(k) € B, ,
where B, is a ball depending on x, 15, diand | C|.
Consider the set
0 =10:10 1< al. (4.10)
In the following, we will show that as long as e(k) €
0, Q; will be an invariant set, provided ¢ and A are suf-
ficiently small. We consider (3.10)
y(k+1) =
fii(x(k-d+1)) +
ga1(x(k-d+1))u(k-d+1) =
Fooa(x(h = d +1),0) + (ggy(a(h - d +1),0) +
Ssgn(gy 1 (x(k - d + 1),0)))u(k - d + 1) + 0(e + 9).
(4.11)
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By e(k) € Q and Remark 3.2, the last term on the
right-hand side of (4.11) is O(e +9).
The estimate of the system output is
y(k+1)" =
By Taylor formula, it follows that
e(k+1) = y(k+ 1" - y(k+1) =

FoiCaCk - d +1),w(k)) +

(ggr(x(k = d +1),0(k)) +

Ssgn(ga_1(x(k = d + 1),0(k)))ulk - d +1).
(4.12)

(k= d +1),w(k) = faa(a(k - d +1),w)) +
(84-1(x(k - d + 1),v(k)) + Osgn(gy_1(x(k — d + D,o()Nulk -d +1) -
(ggr(x(k = d +1),0) + dsgn(gu_1(x(k - d + 1),0)))ulk - d + 1) + 0(e +8) =

(Jf;eﬂl(x(k ~d+ 1),10_(k_)))'

ek

dw(k)

+d(k) =

(J(é’dq(x(k —d +1),v(k)) + Osgn@ur(x(k - d +1),v(k))))

dv(k)
O (k)p(k - d +1) + d(k),
where d(k) = 0(1 &(k) 12) + 0(e + 8),0(k) =
@(k) - O. Since x(k) is bounded, from Remark 3.2,
there exist ¢; and ¢, such that
L d(E) l< ¢ 1 OCk) 12+ ca(e +8),
therefore, we can choose A, and ¢ which are small e-
nough such that
| d(k) I e 1 (k) 17 + co(e + &) < do.
(4.14)
From (3.14),(3.16) and (4.13),it is easy to see that
O(k+1)p(k-d+1)+d(k) =
a(k)(® (K e(k — d +1) + d(k)) =
alk)(y*(k+1) - y(k +1)).
(4.15)
Using (3.14),(3.15) and (4.15),we see
Ok +1) =0(k) - b(k)P(k)p(k —d +1)
(@' (k+1)op(k -d+1) +d(k))

(4.16)
and
P(k+1)! =
P(k)™! + b(k)p(k-d + De(k-d+1).
(4.17)

It follows from (4.15) ~ (4.17) that

V(k+1) =

O (k+ 1)P(k + 1)1k + 1) =

V(k) + b(k)(O (k+1)e(k-d+1))* -
26(k)® (k) p(k - d + 1)(8" (k + 1)k -
d+1) +d(k)) + b(E) ¢ (k-d+1)P(k)p(k -
d+ 1)@ (k+ 1)k -d+1)+d(k)) =

V() = b(E)(® (k+1)p(k - d + 1)) -

)'u(k -d+1)

(4.13)
26(k)O (k + Do(k - d + 1)d(k) -
b(k)2¢ (k-d+ DP(K)o(k-d+1)-
(0 (k+1)p(k-d+1)+dk)<
V(k) - b(k)(O® (k + 1ok -d+1))* -
26(k)O (k + Dok - d +1)d(k) =
V(k) - b(k)(a(k)?(y(k +1) -

y(k +1)%)% - d(k)?). (4.18)
By (3.17) and (4.14) ,we have
V(ik+1) < V(k), VYk. (4.19)

Hence, it follows from (4.17) and (4.19) that

agl | Ok) 12 =

& (k) P(0)"'O(k) < ' (k) P(k)7'O(k) <

& (0)P(0)7'6(0) = a5' 18(0) I, (4.20)
which leads to

16(k) 1<18(0) 1. (4.21)

Consequently , we show that {2, is a positively invariant
set.

Step3 It is similar to the proof of step 3 ~ 5 in [4],
we can obtain that e (k) remains in {2 for all £ = 0.

Step 4 From (3.4),(3.9) and (4.21),we obtain

| u(k) Is%(r* +VpM 1 6(k) 1) <

S+ M 1B 1410 1)) = 0. (4.22)

From (4.12),(4.13) and (4.14),we have
| y(k +1) 1=
ly(E+1)" +e(k+1) 1=
10 (k)o(k - d +1) + d(k) +
Foa(ax(k = d +1),0(k)) +
(Bar(x(k = d +1),v(k)) +
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Ssgn(gy(x(k —d +1),v(k))ulk-d +1) I
V'p + gN 1000) | +Vady +VpM(1O0) 1+1 O 1) +

o(/qM(18(0) 1+1 0 1) +9). (4.23)
Obviously , the conclusion ii) is true.

Step 5 Now we prove conclusion i) and iii) . From
(3.17),(4.14) and (4.18),it is easy to see that

(- D)aPb Bk + D - y(k+ 1) P <

V(k) - V(k +1) - b(k)(%a(k)z(y(k +1) -

y(k+ 1)) - d(k)?) <

V(k) ~ V(k +1). (4.24)
Summing up both sides of this expression from 0 to o
leads to

(-1 atPb Ik + 1) - y(k + D" <

V(0) = ©(0)'P(0)'®(0) < =, (4.25)
which implies
alk)?b(k)(y(k +1) - y(k +1)*)*—0.
(4.26)

By (3.4) and (3.15),we have
go'(k +d - I)P(k)go(k +d-1) <
¢ (k+d-1)P0)p(k+d-1) <
apl o(k +d-1) 1> < M,,
where M is a positive constant. From (3.14) and (4.
26) , we obtain
Ok +1) - 0(k) I” <
aop' (k+d-1)P(k)e(k +d-1)a(k)*b(k)?-
(y(k+1) - y(k+1)*) >0, k— o,
Thus we get
O(k+1) - 6(k)—>0, k—0. (4.27)
It follows from (4.26) that there exists an integer ko >
O such that ¥ k = ko, we have
a(k) 1 y(k+1) = y(k + 1) | < Vad.
(4.28)
Suppose that the assertion (4.28) is not true, then there
is a subsequence {k;:i = 1,2,--+} such that
alk) |l y(k +1) — y(ky + 1D* 1 =V ady.
So,by (3.17) we obtain
aCk) v/ b(k) | y(hy +1) = y(k; + D™ 1= v afds.
Set i — o ,then {a(k;)?b(K)(y(k; + 1) — y(k; +

1) ")} does not converge to zero. It contradicts (4.
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27) . Therefore, (4.28) is true.By (3.17), a(k) =1
for all k > k,. Hence,form (4.28)
ly(k+1) = y(k+1)* 1 <Vady, VE = k.
(4.29)
Recall that
y(k+d)* = fu(x(k),w(k +d-1)) +
(8a-1(x(k),v(k + d -1)) +
Osgn(gg_1(2(k),v(k + d - 1))))ulk),
(4.30)
while the control u(k) is generated from
r(k) = fui(x(k), w(k)) + (ot (x(k),0(k)) +
Ssgn(ga1(x(k),v(k))))u(k).  (4.31)
Since /(+, +) and 2 (+, +) satisfy Lipschitz condition in
the compact set S, and notice that § can be chosen arbi-
trarily small, therefore
ly(k+d)* - r(k) I
| fac () w0k + d = 1)) = Jaoy(x(k), w(k)) 1+
| (8a—i(x(k),0(k + d - 1)) + Ssgn(gy_1(x(k),
v(k+d-1))))ulk) - (a1 (x(k),0(k)) +
Osgn(ga-1(x(k),v(k))))ulk) I<
K1O(k+d-1)-0(k)1+0(1) >0, k> .
(4.32)
It follows from (4.29) and (4.32) that
by(k+d) - r(k) 1<
ly(k+d) - y(k+d)" 1+l y(k +d)* - r(k) 1<
Vady, k—> ». (4.33)
Hence the proof is complete.
Remark 4.1 Assumption 1 is used in the proof of
Step 3.
5 Conclusion
In this paper, we give theoretical analysis of the use
of multilayer neural networks and least squares algorithm
with dead-zone in the control of nonlinear discrete
-time systems with relative degree possible higher than
one. The convergence result of the paper is local with re-
spect to the initial parameters but not local with respect
to the initial states of the system. We adopt LS algo-
rithm with dead-zone to update the weights of the neural
networks. The algorithm has much superior rate of
convergence compared with gradient algorithm and ¢ -
(Continued on page 379)
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o- modification algorithm. The similar results are obtained,
using fewer restrictive assumptions compared with [4].
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