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X-Q Adaptive PID Controller and Its Application to
Multiobjective Control System with Satisfied Performance

Xiang Guobo and Qian Yeqing
( Automation Department, Wuhan University of Technology Wuhan, 430070, P.R. China)

Abstract: This paper gives a new adaptive PID controller named X-Q. It has novel frequency characteristics of adaptabili-
ty: For the control action it is an adaptive PID controller without any phase lag, but there is an amplifier with the gain k in the
high frequency and an integrator with integral time constant in the low frequency; For the harmonic input it is still an adaptive
PID controller, but the transfer function in the high frequency is W = 0.81ke™'#" , the transfer function in the medium-low

frequency is W = %e’w'ﬂo . Finally, employ the new adaptive PID controller to realize satisfied control of the multiobjec-

tive control system(MOCS) . The results show that its performances are much better than the ones of ITAE optimum control sys-
tem.
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1 Presentation of the problem

The reference signal of control system is generally a
function of time ¢ with low order. That is to say it con-
tains not only step input, but also ramp and accelera-
tion, etc. A system with optimum performance should
be with good responses not only for the step, but also
for the ramp and the acceleration, etc. We define such a
system that has satisfied more than two optimum perform-
ances as
(MOCS) .

It is impossible to realize the optimum control of
MOCS with linear control theory. That is because linear

system is a minimum phase system. An increase of one

multi-objective  optimum  control  system

degree of zero steady-state error will bring 90° phase lag
to the system, which would worsen the dynamic perform-

ance. Reference [1] points out that multi-value nonlin-
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earity would break the stability of ITAE optimum control
system with zero steady-state error of uniform velocity .
Whatever kind of nonlinearity may be present in the sys-
tem, it will always break the stability of ITAE optimum
system with zero steady-state error of uniform accelera-
tion. So it is very difficult to apply the two kinds of op-
timum control system to engineering.

In order to realize satisfied control of MOCS the fol-
lowing problems should be solved:

First, One needs some practical nonlinear integrators
in engineering. Its amplitude frequency characteristic can
make integral action, but its phase lag must be as small
as possible. Reference (2] gives a nonlinear integrator
with variable phase lag. Reference (3] gives the one
with zero phase lag. But they both have too big higher-
harmonics. Reference [4] gives an only 38.1° phase lag
nonlinear integrator named Clegg by us. Reference [5]



gives an intelligent integrator. Its phase lag is only
27.6°. There are not too big higher barmonics in the last
two kinds of integrator. So they can be applied to engi-
neering, but they are both of a nonlinear integrator type.
Here a new adaptive PID controller is given. It can auto-
matically change its control function according to the
transient process developing, starting from amplifier
state, passing through PID, then coming into integrator
state at the end. This wonderful characteristic just satis-
fies the requirement presented to the controller by opti-
mum control law. In Sections 2 and 3 its basic principle
and adaptability are described.

Secondly, the system is nonlinearized after leading
nonlinear controller into it. Designing a nonlinearization
system with optimum performance is very difficult. Ref-
erences [6,7] have already discussed how to use equal-
amplitude principle and artificial experience to design
optimum control of MOCS with Clegg integrator. And
those techniques are called twice optimum control. Its
performance is much better than the one of linear system
with ITAE optimum control law, but it has not yet met
the practical requirement. Optimum solution of MOCS is
multi-valued. Generally we can only take its sectional
optimum solution. It is very difficult to get the optimum
solution in the whole field. In this paper, we prefer
looking for its satisfied optimum solution with CAD. It
must be pointed out that satisfied solution is no worse
than the sectional optimum solution sometimes. This
problem will be discussed in Section 4. Section 5 is the
conclusion.

2 Basic principle
Assume the controller with the model

—11_- e;(1)de,  e(1)e; (1) <0,

ke;(t), e;(t)e(e) > 0, (1)
.0, e(1) =

where e;(t), ep(t), k and r are input, output, gain

n"n( f) =

and integral time constant of the controller respectively.
Setting
e;(t) = Apsinwt, (2)
where A,, is amplitude; w is frequency. ey(¢) can be ex-
panded into Fourier’ s series, and with only the basic
harmonic is taken, then

eo(t) ~ eq(t) = Asin(wt + 6,), 3)
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where
An 2 2
Ai=5 =W " Qkrw+ 7 )+ [kr(r+4) w+272;
(3.1)
2kt +
01 == ) A w3+ 2 3.2)
Definition 1  Setting
Ey(w)

W(w, k,7) = Ew) = H(w,k,7)ehleks),
(4)

It is defined as the transfer function of the controller,
where Ey (w) and E;(w) indicate the Fourier transform
of eq (t) and e;(t) respectively,

Hilan Ee) = —V213'9ﬁ, (4.1)
TTw
here,
[ w\2 )
=2 +2§( )+1 (4.2)
13.9 1
w, 55 ke < 0.5— k (4.3)
. | (4.4)
2+/13.9 x 55
Theorem 1 If w — o, then W(®,k) =
1.16ke™ ™55 f 0 <« w < w,, then W(w,7)
12_3)8 t, where, 6, € [ - 40°, - 57.52°]. So W(w,

k,7) is the transfer function of adaptive PID controller.
Proof Take the limit for Eq.(4),it becomes:
W(ewo, k) = limW(w,k,7) =

W%

2£75T5ke‘j‘g_](2ﬂ'l4) = 1.16ke 1, (5.1)
W(w,, k,7) = limW(w,k,z) = '38e'j40°,
>, Tw
(5.2)
W(0,t) = limW(w,k,z) =
w0
v 13.9 Le-jng"(g) _ 0-_6e—j57.52° (5.3)
2r  tw T tw ) ]

Q.E.D.

Theorem 1 shows that the controller possesses a fre-
quency characteristic of adaptability in the transient pro-
cess; There is a gain with phase lag 15.6° and it only
depends on the £ in the high frequency; and an integra-
40°, - 57.52°] in the medi-
um-low frequency as w € [0,w,] and it only depends

tor with phase lag 8, € [ -
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on the 7. That is to say, its control function automati-
cally transforms as following transient development from
amplifier state at the beginning, passing through PID in-
to an integrator state at the end. It means this controller
can separately control the quickness, smoothness and
steady-state precision of system with & and 7. This kind
of adaptability is different from the others. So we name
it X-Q adaptive PID. _

Adaptive PID is a nonlinear controller itself. The big
or small higher harmonic can damage the performance of
systeni in different degree. We can count the ratio of all
kinds of higher harthonics to the basic. The results show
that the greater the gain k, the smaller the influence of
higher harmonic on the performance.

3 Adaptability

In order to bring to light the adaptability of the con-

troller it is necessary to study its asymmetrical frequency

Vol. 16

where, Ag is DC component of controller input.

The eo( ) can be expanded as Fourier’s series, and
only DC and basic harmonic are taken, then the follow-
ing equation can be obtained.

Eo(wt) =

Hy(w,r,k,7)Ag + Wiw,r,k,7)Apsinet =

Eoy + Eor, (7)
where, Eg, and Ej, reqresent DC component and basic
harmonic of the contro]ler output respectively .

Ho(w,roky7) = 222 1), (8)
w20
2 .
by = & +4(a2c;1nr) +8, (8.1)

7> + 4(arcsinr)® +_.3_‘ (8.2)

Wiy = ’
8(r + r—aruﬂinr)fnr

Wl(wyr’kyf) = Hl(wsr’k5r)e-j0‘(w'r'k'r)’ (9)

characteristic . _ VN ,\/ (ﬂ)2 w B
Hi(w,k,t,r) = 2z \ay +2§1w21+1,
Setting ei(t) = Ao + Amsinwt,, (6) (9' 1)
‘ 2Ur(1 + Pw + Qrr’ + x)
0 (w,k,T,r) =—1tg , (9.2)
(7r + 471 - P kro +2(1 - 372 + 2r+/ 1 — rfarcsinr)
here, 0, r—0, then Hy(0,0,7) = 1.5/(tw). So Hp is the
N 1 ¢ M, Ay transfer function of an adaptive PID controller without
Wl TAL ke’ l_zm’r—A ’ any phase lag.

N=4[(x2+9)7r* + (n?-6)r" +4+1+

41 -3r)rv 1 - rlarcsinr +

4r*(1 - r?)aresinr

_82 + 871 - 2+ +20;

= 8rx(r* - 2r V1 - rParcsinr + 1) +
a4-120)V1- 7+

32r(1 - r?)arcsinr.

Definition 2  Setting
w Eoq
(wzo + 1) =

Define it as DC component transfer function of the con-
troller.

Theorem?2 Ifw— ®, r—1, then Ho(,1,k)
= 3k; fw = w,O,O <17 < 1, then Ho(w,r,r) =
ho(r)

Tw

L =4r

Ho(w,r, k,7) =

7?2 + 4(arcsinr)? + 8
27

, where ho(r) = s fw—

Proof Because w — © 7 — 15 @ —=0esr— 07,
take the limit of Eq. (8), one will get the above results.

Q.E.D.
Definition 3  Setting
Wl(w9r9kyf) &
- Ey(w)
Hl(w,r’kyr)e_‘lal(w’r'k’t) = _E:(:-_I(%)' (10)

Define it as basic harmonic transfer function of the con-
troller.

All the same, theorem 3 is obtained.
r—1, then W;(,1,k)
- 0.8ke P8 Fw—>0, r—0, then W;(0,0,7) =

Theorem3 Hw— »,

O——;:l e 5757 Tt is still an adaptive PID controller for ba-

sic harmonic signal.
Fig. 1 gives Bode plots of Eq.(8) and Eq.(9). The
dotted lines indicates Bode plots for different r, because

r and w are variable in the transient process, so the ac-
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tual Bode plots are solid lines indicated. It gives full
proof of the adaptability for this controller in the tran-
sient process. It is pointed out that the influence of r on
Hy and H, is small, but the influence on & is very big.
This is because w,;(r) will decrease very quickly as r
decreases. That is to say, the smaller the r, the bigger
the 6; and the smoother the transition.

L/dB 6°

60  45"H
Wy, 201g Ao (@, 7)

40 0 N

T G(w, 7)

20 —45°

e 20lg H,(w , r)
0 90501 o0 1 10 100 w
0.00010.001001 0.1 1

Fig. 1 Bode plots of X-Q adaptive PID
Compare the Theorem 2, 3 with 1, and we see that

the basic harmonic is weakened by asymmetrical compo-
nent, while control action (DC component) is stronger.
That means the controller will have a better adaptability .
4 Application in MOCS

Optimum control of MOCS is a deep question in the
linear control theory for a long time. This is because if
you want to realize the optimal control system with zero
steady-state error of uniform velocity or acceleration,
then its step response is very bad. But this problem can
be easily solved by X-Q adaptive PID controller.

R(s) + bys+1 N Y(s)

_T 5 T oststby)

Fig. 2 Three order control system with two integrators

Example 1 Fig.2 gives a system with zero steady-
state error of uniform velocity. Where transfer function
b]S +1

of controlled object is — 1 i is transfer
S(S + b2)

function of linear controller. Here S is standard differen-
tial operator. Design task is to select optimum parameter
set (b, b,) for making the system double objective opti-
mum performance. According to the ITAE linear opti-
mum control law!8!, b, = 3.25, b, = 1.75. Its re-
sponses are as follows!® ;

1) Step response; Qu% = 38.7% ,ty = 7.2s;

2) Ramp response: t,; = 4.73s.
where Qy % is overshoot, tgq,t, is transient time as
e(®) < 2% , here subindicator " !” indicates linear.
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Now, utilize X-Q adaptive PID controller to make
above system double objective satisfied control.
Record
2nTw

= /13.94-

270 -6, (ws k)

L 2m
then 5 = A9/t

1
Use ﬁs'_’—+— instead of linear PID controller

Sn

ek o

(11)

b18+1

in Fig.2. Its open-loop transfer function takes the form
of
b 15" +1

(s 4 by’ (12)

W(S,E,,) =

It is a very complicated nonlinear equation. To take its
analysis solution is very difficult. We can look for its
satisfied solution with CAD. First, give a set of parame-
ters, make out logarithmic frequency characteristic of
Eq.(12), then revise them step by step to get the maxi-
mum phase margin. Take this parameter set as initial
value to look for the optimum parameter set to satisy the
following performance function
J = Qg %ty = min. (13)
With the system the better performance as b; €
[19,35], b, € [9,70] can be achieved. Finally, a-
mong the above number field, a satisfied parameter set,
that makes the system with response time ¢,, as quickly

Y ()
1.4 Q%=0.5%
1.2 tn=127s r(l)
1.01
0.8
0.6
0.4 yit)
= eo(t)

0
0 05 1.0 15 2025 3.0
(a) Step response

25|70

2.0

1.5
tw=12ls

1.0 ,(,/
7 eylt)
0.5 /i (1
.
0 ,74(1)
0 05 10 15 20 25 3.0
(b) Ramp response
Fig. 3 Response curves of double objective satisfied

control system
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as possible for the uniform velocity input, can be found
as follows: b, = ¢ = 19.8, b, = 9.6, k = 3. Its re-
sponses are shown in Fig.3.
where

Qun% = 0.5% < Qu% = 38.7%,

tyn = 1.2Ts <= tg = 7.2s,

ty = 1.2ls < t,; = 4.73s.
The results show that the performance of double objec-
tive control system with X-Q adaptive PID is much better
than the one of ITAE linear optimum system.
It is known that the ITAE optimum
open-loop transfer function of system with three integra-

Example 2

tors is as follows!8!

§4.2353_+I)E‘_U.7(}5s + l_)‘ (14)

&
Its responses are as follows: Qu% = 24.8%, tg =
3.37s; t,; = 2.82s; ty = 3.16s.
By the same method, its open-loop transfer function
can be obtained as follows
W(s,5,) = (b|.§”+{)(2b_gs+l). (15)
8pS
We can obtain the satisfied control parameter set: k =

3, by = ¢ = 5, by = 1. Its response curves are shown

in Fig. 4, where,
Qu% =3.5% < Qu% = 24.8%,
tpn = 0.79s < ty = 3.37s,

W( ) (bls+1)(b23+1) - ton =0.728<tul = 2.82s,
A § = by = 1.57s< ty = 3.16s.
Y() Y(t) Y(t)

14 Qdu%=3.5% 25 3.0

12 Lin=0.79s () 20 55

1.0} _— 5 10
0.8 1.5 Lyn=0).72s .

' 1.5
0% 1.0 tan=1.5Ts
0.41f ¥ 1.0

0.5

0.2 et eo(t) 0.5 () e(t)

0 0

Nl e,
0 05 1.0 15 20 25 3.0
(a) Step response

0 05 10 15 20 25 3.0 ! Of}

(b) Ramp response

05 1.0 1.5 20 25 3.0

(¢) Acceleration response

Fig. 4 Response curves of three objective satisfied control system

The Results show that the performance of three objec-
tive satisfied control system with X-Q adaptive PID is al-
so much better than the one of ITAE linear optimum sys-
tem. Indeed, its quality is very good. People must re-
gard it as a system with satisfied control performance.

So does it for the other system.

5 Conclusion

Results investigated show that X-Q adaptive PID con-
troller has a very good adaptability. By means of this a
system can multiobjectively satisfy its required control
performance. This is the need of many industrial control
systems, especially in servomechanism, and it is easy to
realize the X-Q adaptive PID algorithm with micropro-

cessors. So it is of great value for practical application.
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(12),(13) requires additional costs for the calculation
of the symmetric matrix-function ¥ (¢, u). The expect-
ed effect of this information is connected with the im-
provement of the quality of each iteration. This theoreti-
cal prediction is justified by the results of the numerical
testing, when the quasigradient procedures (12), (13)
'show their advantages in comparison with alternative
methods.
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