%16 5 3 1
1999 % 6 A

2 B8 5 B
CONTROL THEORY AND APPLICATIONS

Vol.16,No.3
Jun. , 1999

Model Reference Variable Structure Control for
Non-Holonomic Mechanical Control Sysytems *

Guo Qingfu
(Computation Center, Henan Financial and Ecology College* Zhengzhou,450000,P.R. China)
Guo Shujuan
(Department of Mathematics, Xinxiang Teacher College* Xinxiang,453000,P.R. China)

Wen Xiangcai

(Centre of Information, State Environmental Protection Administration* Beijing, 100029, P.R. China)
Liu Yongging

{Department of Automation, South China University of Technology* Guangzhou, 510640, P. R. China)

Abstract: A variable structure model reference tracking controller for non-holonomic mechanical systems is designed un-
der parameric perturbation and external disturbance. A design procedure with three-stage control is developed to solve the track-
ing problem for perturbed non-holonomic mechanical control systems based on a proper matrix decomposition, the concept of in-
put/output decoupling in nonlinear control theory, and the theory of variable structure control. Finally, a typical non-holonomic

example a vertical wheel moving on a given plane

vantage of the proposed method.

is given with computer simulation to illustrate the significant ad-
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1 Introduction

Problems associated with the tracking, stabilization and
stability of control systems with non-holonomic con-
straints (i. e, control systems with non-integrable con-
straints) have become increasingly important during the
past decade and have consequently received the attention
of many investigators . This system has extensive practical
background, such as mobile robots, automatic pilot vehi-
Cles, a knife edge moving in point contact on a plane
surface, a vertical wheel rolling without slipping on a
plane surface. Bloch et all?! treats a special system, the
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Caplygin non-holonomic mechanical system (i.e., a
non-holonomic system with certain symmetry proper-
ties) . A so-called normal form is introduced to model the
dynamics completely . Based on the normal form, a feed-
back control strategy to perform input/output decoupling
is proposed by You and Chen'®’. McClamroch and
Wangm considered the holonomic case. In these de-
signs, the dynamic models are assumed to be perfect, ex-
actly known, and free of external disturbances . However,
in many practical situations, the system parameters may
be perturbed due to unmodelled dynamics, model trunca-
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tion, uncertainty in friction force and load, flexibility of
ther mechanical body and deformation of the constrained
surface, etc. In addition, external disturbance due to vari-
ations of environment and load may also occur. Hence,a
control design for control systems to achieve the purpose
of robust tracking under parametric perturbation and ex-
ternal disturbance is important for practical application.
This paper considers the problem.
2 Main results
Consider the following non-holonomic mechanical

system with parametric perturbation and external distur-
bance

M(q)q? + €(q,9)q + 6(q) =

‘B(q)t + J"(@)A + dy, (1)

J(q)q = d; (2)
where the variable ¢ € " denotes the generalized coor-
dinate and determines the geometric configuration of the
mechanical system. The time derivative ¢ € &" is the
generalized velocity. M :IR" — R"*" represents the gen-
eralized moment of inertia, assumed to be a symmetric
and positive definite matrix. = € " is the control input.
B:R™ — R™*" denotes the input matrix with full column
rank, and B(¢q)t € R" is known as a nonconservative
generalized force along the direction of its corresponding
generalized coordinate ¢. G(g) denotes the gravitational
forces and the term C(¢q,q)q includes centrifugal and
Coriolis forces (even the frictional forces), J: R" —
R™*" determines and models kinematic constraints
J(g)g = 0 in (2),and A € R™ denotes the contact
force due to the reaction of the non-holonomic constraint
in (2), d,,d, denote uncertainties, J(g) has full row
rank m(m < n).

Remark 1

m{m < n) non-integrable and independent constraints.

The equation J(g)q = O consists of

Unlike the holonomic case, it is impossible to obtain an
equivalent algebraic constraint equation $(g) = 0, for

%ﬂ = J(g), by inte-

grating J(¢)q = O on both sides.
Analogous to the method of reducing order in [6],

without loss of generality,assume (2) can be written in-

some mapping @ satisfying

to the form ( J1(q) J2(q)) (?‘) = d,, so that J;:R"

42
— ™™ is non-singular whereas ¢; € R™ is regarded as
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the passive position variable,and g, € R"™™ is regarded
as the active position variable. Then, the independent
constraint J(¢)q = d, becomes

g1 = Ju(g)qz + Ji' () ds (3)
where J;,(q) = - J7'(q) J2(q). In terms of the above
non-holonomic constraint, the velocity ¢ is expressed in

the form

= (i e 77

T(q)Ezéz + Wi

(4)

where the matrices E; and E, are defined to be partitions

I,
of the identity matrix I, = (E; E,) as E; = ( 0) €

0
R**™ | E, — (] ) & R"x(n—m),T(‘]) =
(Im J12((1)). So
0 In—m
¢? = Jn(@) g5 + F(q2:q2)q2 + @2 (5)
where
: dJi(q) .
F(q2,q2) = %T(Q)Ezqz,wz =
dJ" 3( ) dJ_l(q) -
:"l?q_w.i?g + #q T(q) Exq2ds +
(_U[l(q_)u d
dq ']"2'

Decompose the equations of (1) into the following form
(wa quq(ﬂﬂ

+
Mu(q) Mu(q)l \gf?

(Cl(q,é)é)+ (Gl(q)) _

Bl(q)‘[ dll T
(BA@J+(QJ+JA' o

From (3) ~ (6), the following dynamic equations are
obtained
M12(q)q§2) i 612(%‘}2)42 + G (q)

Bi(9)t + JT(@)A + du,s (7)

17’122(11)(152> + Ezz(q’éz)éz + a2(<1) =

By(g)t + dip, (8)

g1 = Ju(@)q + J7'(g)d, (9)
where

Mp(q) = Mu(@)Jn(q) + Mp(q),
Cn(q.q2) = My(q)F(q,q:) + Ci(q,q)T(q)E,
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dy = dy + (Ci(q.q5) - C,(q,T(q) -
Ez‘jz + wl))(T(q)Ezéz + w1) -
M11(q)w2 - Cl(q,éz)wn

My(q) = My(q)Jp(q) + My(q) + JoM(q),

B,(q) = By(q) + JLB(q),

Cn(q,92) = Mu(q)F(q,q;) +

C:(q,9)T(q) By + JHCo,

G2(q) = G(q) + JHGi(q),

dpp = dyp + (Co(q,92) - C(q,T(q) -
Eyqs + w))(T(q) Ezqs + wy) -
My(q)w;y - Co(q,q2)w + Jhdys.

Select the first-stage feedback control to be
Bz(q)f = Mzz(q)u1* + azz(‘héz)éz + Z;z(q)
(10)
where u;* is a new external input that is specified later.
With the above feedback law substituted into (8), the
following dynamic equation is obtained
Mzz(Q)(Qé” - u) —312 = 0. (11)
As M(q) symmetric positive definite, My(g) =
( J 12( q ))

n—-m

(Jh(q) IE_,)) M(q) so My (q) non-sin-

gular. From (11), the following dynamic equation is ob-
tained
¢? -uf -d=0 (12)
where d = M3'(q)dy,. (12) is the reduced form of the
non-holonomic mechanical system. For the force A , we
have an expression
A =JiM(@){(Cplq,q) - Mp(g) Mz -
C»(q,9))q2 + (Mp(g)Mz'dy, -
dn + (Mp(q@)M3 By (q) - Bi(g))t +
(61(q) - Myp(q)M3z' (¢)Gy(g))}.
From the constrained dynamics (9) and the reduced form
(12), a generalized normal form of the perturbed non-
holonomic mechanical systems is described according to
q = (Ju(q))v + (Jll(q)dz) = D(q)v + wy,
In = 0
v = uy +d
(13)
where we have set the new variable v = (jz and D( q) =

S Gl A T

n-m n-m
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purpose is to make the first (n — m) configuration vari-
ables tracking the desired reference signal. Choose the
first (n — m) configuration variables as output variables
y € R"™ and the reduced statespace non-holonomic
mechanical system is established as

x = F(x) + Gu* +d”,

y = H(x) = E3Tq (14)
D(g)v
where x = (q)e R2"-m F(x) = ( 1 ),G =
v On-m
On n-m In—m
( . >),E3=( ),d'=(w1).mc=
y f— Omx(n—M) d
(g7 & gr_n)", the (n + i) th element of g, is
1, the other is Z€10; H(x) -
(H{(x) Hi(x) H ()T,
Assumption 1 LLy ) H,(x) = Oforall k = 0,

LB =230 = 1,2, ,(n=m)sj = 1,2, (n -
m);

Assumption 2 rank M(x) = n - m,M(x)is(n
- m) x (n — m) matrix, the element ith row and jth
column is my;(x) = Lyl s Hy(x).

Then under the Assumption 1 and 2, we have

yi = LeoyH(x) + Ly H(x),
)’52) = LzF(x)Hi(x) + nZ_)Tng(LF(x)Hi(x))uﬁ +
=
Ly Loy Hi(%) + Ly H(x) +
Snng(Ld* H(x)) + Lp(x)Ld‘(x)Hi(x) =
-

LZF(x)Hi(x) +4d5,

e *
YD = Ly H(x) + dj_y,

ﬂ’ n-m %
y‘fi = LF(x)HL(x) + Zmu(x)ul + d‘ﬁ,

j=1
Suppose that for channal (i = 1,***,n — m), the ref-
erence signal is generated by the following desired model
with certain appropriate initial conditions
®) () .

)’d'.(x) + aliydl.(x) + 0+ a,@i—li}’di +

agys =0, i = 1,2,"",n - m. (15)
Without loss of generality, it is assumed that 8 < 8, <

B3 < ' < B,_m. From Assumption 2, M(x) is invert-

ible, the control u{* can be designed as
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' yfﬁl)( x) Therefore, robust tracking can be designed channel by
|
) (%) channel independently, we express these tracking error
X
ui (x) = - M (x)[A(x) - T4 ) + dynamics in state space form
: 0 1 0 = 0
yfon) (2) Lo o 1 e 0
2= . .
yfﬂl‘l)(x) _ yE/lal-l)(x)
y &0 () - 0 () e T Migp
i : i 0 0
. . 0
J’Efi"ﬁ{" V() - )’(Jf':;'" D(x) o+ | . |+ d:} =
yl(x) - }’dl(x) 1 1
B EARORE: SaC Bz + Fof + Fdjy,i = 1,2,,(n = m)
8, : '

y Pz B0 (2) = yfo-nP (x)
Q’1(x) - Ydl(x)

y B0 () - BB ()
A‘B +1 . 2

e P () =y PPV ()
yx) - Ydl(x)
yz(x) - ydz(x)

w4 Ag , "

P (5) = 9B )
yl(x) - ydl(x)

*

yz(x) - de(x)

4 Ay T+v

Yo-m(#) = ya_ (%)

(16)
where A(x) = (Af(x) A3(x) Ar_n(x))",
A;(x) = Lii(x)H,-(x)(i = 1,2,>*,n — m);v" is
some new external control; A; = diag{a“,an,-",
@l sl = 1,2, Bu_msag(l = 1,2, Bu_psi =
1,2,:+,n — m) satisfies condition; a; = 0ifl > §;,
else a; = a;if0 < I < f3;; where a; is the same as in
(15) . Under the control (16) , the state tracking error dy-
namic equation which the decoupled system (14) tracks
(15) is given by

el (%) + al,'e,-i_l (%) + + age; — v ~

dzf;i =0,i=12,,n-m (17)
where ¢;(x) = 5;(x) — y4(x), e (x) = ¥y (x) -
yl(,{')(x),i =12, (n-m)l<j<Bi

(18)
where z; = [e; ¢ - e{fi~D]T. Next we proceed to dis-
cuss the variable stucture tracking control problem based
on the above state equation. First we choose switching
function S; = Cz;,i = 1,2,**,n — m; C;is left for de-
termined. On the manifold S; = 0, suppose C; = [ C;
Co Cg_i 1]7. Select C; such that all the roots of
Ml g Cp A2 4+ Gy =00 = 1,2,05n = m)
have negative real-part. Then on S; = 0, limte; = 0.

e

Next we design control v, (i = 1,2,**,n - m) such

that limz S; = 0. Suppose || dj || < #;, v/ is designed

as
B.-1
’l)i* S Z(— CU + aﬁA_ﬁ)egj) + ap,i)ei -
j=1 13 i
esgn S; — £i(S;) (19)

where f;(S;) is continuous function vector and satisfies
S:£;(S;) > 0,e > 0. Then
S7S,=STdj - eSTsgnS; - SIi(S;) < - eSisgnS;,

s0, lim¢S; = 0.

t—>w

In summary, the following steps need to be taken tc
arrive at a stable implemention of the control laws:

Step 1

and control 7 is designed as (10);

The system is decomposed into (7) and (8),

Step 2 On the basis of the concept of input/outpul
decoupling in nonlinear control theory, a decoupled sy-
sem is established and external control u," is designed as
(16) .

Step 3  Variable structure control v* = ((vy)’
(05 )7+ (vi_)DTis designed as (19).
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Remark 2 when it is difficult to estimate or to
measure the corresponding disturbance d gi» We can use
the method of H,, control (that is described in the other
paper) such that the effect of d E ; on the tracking perfor-
mance is as small as possible or at least below a certain
desired level.

3 Simulation

Example —— Vertical wheel Let x and y de-
note the coordinates of the contact point of the vertical
wheel on the plane. Denote ¢ as the heading angle of the
vertical wheel (measured from the x axis) ,and 6§ the ro-
tation angle of the vertical wheel due to rolling ( mea-
sured from a fixed reference) , the dynamic equations of
the vertical wheel, with all numerical constants set to u-
nity, are given by

2@ = 2y, ¥ = A,
6@ - 71 — AjcosP — Aysing, (20)
@ = 7, ~ A(sind + Ascos
with the non-holonomic constraint
x = Ocosp + ¢ sind,y = Osind - $ cosp (21)
025 — ———r
N\
02| \
l\
- 015} _ {
0 ‘.l the response curve of tracking error x-x
= 0.1 \
5 A
§ 005 N
=] B
£ oo —
8 —
&= —0.05
—0.1 /thi: response curve of tracking error x-x 4
N
B T R S S S S s

Times
Fig. 1 The response curve of tracking error X=Xy, X%y

4 Conclusion

A variable structure model reference tracking con-
troller for non-holonomic mechanical systems is designed
under parametric perturbation and external disturbance . A
design procedure with three-stage control is developed to
solve the tracking problem for perturbative non-holo-
nomic mechanical control systems. In the first stage,by a
proper decomposition matrix, the perturbative non-holo-
nomic mechanical system is transformed into a reduced
form of non-holonomic mechanical system for the conve-

nience of control design. In the second stage, on the ba-
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where z; denotes the control torque about the rolling axis
of the wheel, 7, is the control torque about the vertical
axis through the point of control, and A; and A, denote
the forces of the constraint that arise from the non-holo-
nomic constraints of the vertical wheel in (21) . Suppose
that we want » and y to track the desired reference sig-
nals x,(¢) = sint + 1,y,(t) = 2cost respectively. The

following reference model is adapted to generate x, and

ya:yP

- 1 = 0 with the desired initial conditions, y,(0) = 2,
74(0) = 0,%,(0) = 1,%,(0) = 1. Select

2cos$  2sin - 0¢ sind + ¢zcos¢)
E e (2sin¢ = 2005¢) (9¢ cosp + $2sing |

xS;Z) % - x4 X = %y - cost — 1
@ [l s + _ +
Yd Y - ¥4 Y= Ya 2sint
(el —cost — 1 - f(S;) - esgnSl)
ey + sint - 1 - f(S;) - esgn$,

+ a4+ g +2sint = 0,57 + %, + 4, — cost

(22)

where e; = x — x5,e5 = ¥y - y4,S; = ¢; + é,-,i = 1
2. The simulation results are shown in Fig.1 and Fig.2.

the response curve of tracking error y— ¥V,

Tracking error

—0.15}

—0.244

3 4 5 6 7 8 0 10
Times

Fig. 2 The response curve of tracking error y- ;. IVa

sis of the concept of “input/output decoupling” in non-
linear control theory, a decoupled system with parameter
perturbation and external disturbance is established via a
nonlinear dynamic state feedback control. In the third
stage, a switching manifold on which desired model ref-
erence tracking performance without parametric perturba-
tion and external disturbance is achieved for the decou-
pled system. Variable structure control that realizes slid-
ing mode is also explicitly constructed. The computer
simulations illustrate the validity of the design approach.
(Continued on page 395)





