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Abstract; In this paper, the nonlinear optimal control problem connected with the ordinary differential system is consid-
ered, Two modifications to the standard gradient procedures are constructed. The presented methods are based on the qualitative
approximations of the cost functional. For linear-quadratic problems, the modifications have the property of the nonlocal improve-
ment in contrast to the standard gradient procedures. Some results relating to the convergence of the new methods are proved.

Key words; functional increment; quasigradient; approximation

R R R AR ) ) R B AR B T R
£ ®
(BT A B LR /KB, 150080)
i LR )
(R4 MBS AL RO, 150001) (R WEAC/R IR K RUE R BT HE)
T+ o 8 4 3 4 0 B BB 3o 07 1 R B B0 4 308 1

Vol.16,No.3
Jun., 1999

SR, SARERS TR b, RO B AR R BRI R R A, 7 B 4 Hh AR R OB R

XE@iR: RPCUR; WEHI; AAL

1 Introduction

Traditionally the gradient methods are the standard
tool for solving optimal control problerns[1 ~3) The tech-
nology of their construction and analysis on the function
level is developed quite well and completely corresponds
to the finite-dimensional situation. However, the specific
character of optimal control problems allows to introduce
certain corrections in the ultimate structure of the gradi-
ent procedures. As a rule, these modifications have non-
trivial character and help to discover the additional infor-
mation to improve the quality of some methods [4,5].

In this paper there are presented two quasigradient
methods that use some corrections of the usual gradient.
The basis of the modification is the nonstandard formula
of the functional increment with improved characteristics
of the approximation. This fact increases the quality of
corresponding methods which obtain the second order
approximation with respect to the phase variables. Conse-
quently, appear to be the property of the nonlocal im-
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provement for the linear-quadratic problem that takes off
the subproblem of the parametric search on each itera-
tion.

The methods are developed for the typical problem of
the optimal control without terminal constraints

&(u) = p(x(ty)) +JTF(x,u,t)dt—>min, (1)

u€V,
P =f(x,u,L), x(ty) = %0, (2)
V={u€PC(T):u(t) € U,t € T}. (3)
Here t € T = [0, ¢,] is an independent variable, u(t)
€ R is a control, x(t) € R" is a phase state.
Suppose that the terminal function @(x) is twice con-
tinuously-differentiable in R”, the integrand F (%,u,t)
and the vector-function f(x,u,t) are continuous in R"
x U x T together with first and second order derivatives
with respect to x. Suppose also that there exist the con-
tinuous derivatives F,(x,u,),f,(x,u,t) satisfying

the Lipschitz condition with respect to x on the set R* x
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UxT.

The set of admissible controls ¥ includes the piece-
wise-continuous vector-functions u(¢) with the restric-
tion u(t) € U,t € T, where U c IR" is a convex com-
pact set. Suppose that each admissible control u eV
generates the unique absolutely-continuous solution x(t,
u), t € T, of the system (2) and the family of the
phase trajectories { (¢, )| is bounded: x(¢,u) € X,
t € T,u € V, where X ¢ R” is the compact set.

2 Quasigradient methods of improvement

Define the Pontryagin function (Hamiltonian)

H(g,x,u,t) < (g, f(x,u,t))F(x,u,t)
with the conjugate variable ¢ € R".

Let u(t) be an admissible control with the phase tra-

jectory x(t,u),t € T. We denote

fle,ul = fla(e,u),u(e),0).
Introduce the vector-matrix problem for the conjugate
objects: (n x 1) vector-function ¢(¢) and n x n matrix-
function ¥(t)

;[1:— Hx(()b’x(t’u)’u(t)at),

Ceo fleul' - whleu] - (4
H,(¢,x(t,u),u(),t),
{<,b(t1) = — ¢ (x(ts,u)), 5)
(1) = - ¢u(x(81),u)).
Let ¢(t,u),¥(t,u),t € T, be the solution of
Cauchy problem (4, (5) . Note that ¥ () is the symmet-
ric matrix.

Let w(t) = u(t) + Au(t) be an admissible control
with the phase trajectory x(¢,w) = x(¢,u) + Ax(t),
t € T. Consider the known formula of the functional in-
Crement[6]

O(w) - d(u) =

—JAW(,)H(()[}(t,u) +

T

V(t,u)Ax(t),x(t,w),u(t),t)dt + 9, (6)
7 = 0p(1182(e) 1) + JorC Il Ax(0) D)de -

T

(€000 1 85 12))de -

T

[Cof 1 aw() 1), (e, )B2())at.

T
Here A, H is the partial increment of Hamiltonian with

respect to the control on the pair (u,w), o4, of, of are

the remainder terms in the expansions of the correspond-
ing functions with respect to the increment A,.
An estimate for the phase increment is as follows

las(o) < ¢| lauolide. (D)

T

It should be noted that the remainder 7 in (6) has the
order higher than second with respect to | ACx) .
Thus, the formula (6) defines the quadratic phase ap-
proximation of the functional & .

Linearize the integrand in (6) with respect to Au(s)
= w(t) - u(t). Then we have the expression

AD(u) = 8, ®(u,w) + 72

8@ (u,w) =

- (B ) +

(i, u)Ax(t),x(t,w),u(t),t),Au(e))ds,
(8)

=7~ JOH( | Au(e) || )de.

T

The basis of the approximation (8) is quasigradient
the derivative H,, calculated along the mixed system of
the arguments. As a corollary the quality of the approxi-

mation with respect to Ax is growing on the order. The ef-
fect is especially obvious for the problem, linear with re-
spect to control, when ox( | Au(e) ) = 0,72 ~
o( 2% %), 70 ~ o(ll Az 1.

For given admiissible pair (u(t),%(t,u)) we find
the solutions ¢(z,u),¥(t,u) of the vector-matrix
Cauchy problem (4), (5) . Form the vector-function

p(x,t) =\tli(t,u) + le,u)(x - x(t,u)),

s ER, tE€T.

Determine the auxiliary control by one of the two vari-
ants:

1) Conditional quasigradient method :

u(x,t) = ar%GmUax<Hu(p(x,t),x,u(t),t),v>,

(9)

2) Projection quasigradient method;
a(x,t) = Py(u(et) + H(p(x,t),x,u(t),t).
(10)
Conduct the variation procedure with parameter @ €
[0,1]
u(x,t,a) = u(t) + alw(x,t) - u(t)),

(11)
»ER, tET.
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Find the solution #,(¢) of the phase system
x = flx,u(x,t,a),t), x(t) = 2% (12)
Denote u,(t) = u(x,(t),t,a) and define the problem
for parameter « € [0,1] by the improvement conditon
D(u,) < D(u). (13)
Let’s justify the described procedure. Suppose that the
solution #,(¢) of the phase system (12) exists on T for
each @ € [0,1]. Note that the trajectory x,(¢) corre-
sponds to the control w,(t):x,(¢t) = x(t,u,). Ac-
cording to the estimate (7) for Au(z) = u,(t) — u(t)
we obtain
lax(e) | = [ %(t) - x(t,u) |l <C,, t €T
Denote
u,(t) = ulx,(2),t), p,(t) = p(x,(2),0).
Then the variation procedure takes the form
u,(t) = u(t) + a(u, () - u(r)), t € T.

Define the nonnegative value
8.0 = (H(p,(0),3, (1),

u(t),t),u,(t) = u(e))ds.
Then &, ®(u,u,) = - ad,(u) and on the basis of the
formula(8) , we have the expression
D(u,) — P(u) = - ad,(u) + ofa).
For comparison we reduce the standard gradient approxi-
mation of the functional'""?)
ADP(u) = 8,P(u,w) + 7, (14)

800 (u,w) = - | (HAp(t,u),2(1,0),
u(t),1),Au(t))ds,
7o == | o, Cll 8u() 1 )ds -

J(Awa,Ax(t) > dt -
Jo, (Il ax(e) 1de +

[0, (I ax() 1dt 4+ 0, (Il A1) 1),

Here the quality of the approximation with respect to Ax
is explicitly worse: even for the bilinear problem 7, 5 0.

The formula (14) defines the gradient of the function-
al @ on the control u ()
VO(u) =-H,(¢(t,u),x(t,u),ult),t)
and generates the necessary condition of optimality-the
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differential maximum principle (DMP)
u(t) = argerzla)((Hu((,b(t, u),x(t,u),

u(t),t),v),t € T.
Using the projection operator Py on the set U in Eu-
clidean norm DMP, u(¢) can be written in the form
u(t) = Py(u(t) + Hu(t/;(t,u),
x(t u),u(t),t), t € T,

Lastly we can formulate two gradient methods for our
problem. The variation procedure and parametri'c sub-
problem are the same

u, () = u(t) + a(m(t) - u(r)), t € T.

a € [0,1]:0(u,) < (u). )
The auxiliary control » € V is determined in two vari-
ants according to the above optimality conditions

1) Conditional gradient method
u(t) = arg max < H(lt,ul,v >, € T.

(15)
2) Projection gradient method
u(t) = Py(u(e) + Hlt,ul), 0 € T. (16)
The value 8o(u) = - 8o®P(u,u) has the meaning of
DMP discrepancy on the control u € V;
0o(u) = 0, 8o(u) = 0=DMP.
The improvement property is ensured by the formula
D(u,) - @(u) = - ado(u) + o(a),
which follows the approximation (14) .
In order to prove the improvement property, we deter-
mine the connection between vatues 8,(u ), 8(u).
Lemma 1 For the conditional quasigradient method
(9),(11) ~ (13) , there is estimate
| 8,(u) — 0(u) I< Ca, C = const. (17)
Proof By definition, we have
0a(u) = 8o(u) =

[ BP0 50D, (000, 000D = )t -
JT<HM(¢(t,u)yx(t,u),u(t),t),ﬁ(t) - u(t))ds.

According to the maximum condition for the control
(), there is an inequality
8o (u) = 8p(u) <

J<Hu[t,a] ~-H, [t ul,u,(t) - u(t))ds.

T

(18)
The set U is bounded. Therefore || u,(z) — u(t) || <
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Cy,t € T. Furthermore,
lpaCt) = ¢Ce,u) || =
I (e, u)(x, (1) - x(t,u)) | < Cra. (19)
Estimate the increment of the derivative H, from (18)
I Hy(pe ()2, (2)u(t),0) -
H,(pCe u),x(eiu),ult), ) |
I fuCoa(2) s ule), 2) p, (1) -
F (%, (2),u(t),t) -
fu(x(t,u),u(t),t)Tgb(t,u) +
Fu(x(e,u),u(e), ) Il <
I Fu(xe(6)ue),e) = Fula(e,u),u(e),o) |l +
I (fuCe(2),u(e),2) -
Sulx(e,u),ue), ) p,(t) +
fulaCeyuw),u(e), ) (p(2) - ¢(e,u)) |
Using Lipschitz condition for the derivatives F,, f, with
respect to x and the estimate (19), it can be written
| H,(t,a] - Hlt,ull < Csa.
Then from inequality (18) we have the upper bound
8, (u) = 8o(u) < Ca. (20)
Furthermore , we consider the inverse difference 6¢( ) —
d,(u) and use the maximum condition for the control
u,(t). It leads to the inequality
dou) - 8,(u) <

j(Hu[t,u] -H,lt,al,z,(t) — u(t))d:.

The following deduction is realized as above. As the re-
sult we have the estimate §y(z) - 8,(u) < Ca. With
regard to (20), this proves Lemma 1.
Lemma 2 For the projection quasigradient method
(13 ~ 16) , the estimate (17) is true.
Proof Note that by definition for the projection vari-
ant
u,(2) = Py(ue) + Hy(pa(£),2,(¢),u(t),1)),
t& T.
Then using Lipschitz condition for the projection opera-
tor Py we obtain
lug(e) - uCe) | < W HLt,a] - He,ull.
Represent the difference 6, () — 8o(z) in the following
way
8, (u) = 8ou) =

j(Hu[t,a],ﬁa(t) —u(t))ds +

J(Hu[t,a] -H,lt,ul,u(t) - u(e))ds.

As in Lemma 1
I Hl¢t 2l - Ht,ulll < Cia,
lu(s)-uw)l <€, t €T
Hence, the required estimate (17) is true. Lemma 2 is
proved.

Remark According to the proof scheme of Lemma
1,2, the constant C in (17) can be taken without the de-
pendence of the control u(¢) and the corresponding tra-
jectories.

Theorem 1 If the control u € V does not satisfy
DMP in the problem (1) ~ (3), then for both the quasi-
gradient methods

®(u,) < ®(u) for small @ > 0.

Proof It is determined by the following relations

D(u,) - O(u) = - ad,(u) + o(a) =
- adp(u) + a(8g(u) = 8,(u)) + o(a) =
- ado(u) + o(a).

3 The convergence for LQ-problem

Consider the above quasigradient procedure for LQ-

problem. Let

o(x) = (c,x) + 1/2{x,Dx),

F(x,u,t) = boCu,t) + {alu,t),x) +

172{x,Q(u,t),x),

flw,u,t) = ACu,t)x + b(u,t),
and the function by(u,t), the vector-functions a(u,
t),b(u,t), the matrix-functions Q(u,t),A(u,t) are
linear with respect to u.

We call the corresponding problem the linear-quadratic
problem(LQ-problem) . If the quadratic terms are absent
(D = 0,0(u,t) = 0), then we obtain the bilinear
problem. Note that in LQ-problem the set of the phase
trajectories {x(#,u)} is bounded.

Consider the remainder 7, for LQ-problem. As the
function H is respect
og( Il Au(z) I ) = 0. According to the quadratic prop-

linear with to u, then
erty of ¢(x) and F(w, u,t) with respect to x, we have
0,( 1 Ax(e1) I1%) = 0,0p( I Ax(2) || 2) = 0. In view
of the linear dependence of the function f on #, it should
be of( || Ax(¢) || ) = 0. Thus, we conclude that M =
0. Therefore,

D(u,) - D(u) =- ad,(u) <0, a € [0,1].
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Thus, the quasigradient methods in LQ-problem guaran-
tee the nonlocal improvement; for each a € [0,1] the
control u, is not worse by functional than the initial con-
trol u.

We describe the methods (12) ~ (16) in the iterative
form and consider the convergence property of the suc-
cessive approximations in LQ-problem.

Let & = 1,2, be the index of the iteration,
the

a- parametric family of the varied controls. The step a; is

uF(¢) —— the corresponding control, uf(t)

determined according to the steepest descent rule

@, = arg min(P(uf). (21)
2€[0,1]

The next approximation has the form
u*l(g) = u{,‘k(t), t € T.

It should be noted that in the LQ-problem DMP is equiv-
alent to the maximum principle (MP) . Therefore §( u*)
is the discrepancy of MP. If §( u*) = 0, then the con-
trol u* satisfies MP and the procedure is finished. In the
case 8,(u*) > 0, the improvement property @ (u**') <
®(u") is true. The convergence is described by the fol-
lowing statement.

Theorem 2 In LQ-problem the sequence u*,k =
1,2,-, of the quasigradient methods converges with re-
spect to the discrepancy of MP;

8o uk) >0,

Proof is omited.

k— oo,

Consider the convex LQ-problem, which is character-
ized by the following expressions
o(x) = (e,x) + 1/2{x,Dx), D = 0,
F(x,u,t) = (b(t),u) + Calt),x) +
172(x,Q(1)x), Q(1) =0,
f(x,u,t) = A(t)x + B(t)u + ¢(t).
In this problem the functional @(u) is convex on the set
V with the estimate
O(w) - &(u) = 80P (u,w), u,w € V.
Let u™ € V be the optimal control in the convex LQ-
problem.
Theorem 3 In the convex LQ-problem the quasi-
gradient methods generate the minimizing sequence of

controls ;
&(u*) > o(u*), k— ».
Proof  First, consider the conditional quasigradient
method. We have 8o(u*) = - So@(u,u*) and the
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control u* is the solution to the problem
80@(uk,w) —min, w € V.

So, it follows

&(u*) - d(u*) = 5@, u*) =

80@(uk,uk) = - 6‘0(u").
Using the statement of Theorem 2, we conclude that
®&(u*) - &(u*) - 0,k > . For the projection
quasigradient method, we have

(1) = Py(uF(e) + Hylt,u*]), t € T.

In the equivalent form it can be written
(u*(2) - u*(2) - H[e,u*],u*(2) - w(2)) <0,
w(t) € U.
Setting w(¢) = u*(¢), after integration we obtain the
estimate

8o(u) = [ 11 75(0) = k(1) 174,

T
Thus, the last integral tends to zero when k — o . Tak-

ing w(t) = u”(t), we have the inequality
(HLt,uf],u" (1) <
(ub(e) = ub u™ (1) - uf(2)) +
<Hu[t,uk],uk(t)>.

Then on the basis of the convex condition

O(u) - d(u*) <- 6Pk, u”*) =

J(H,,[t,u"],u*(t) - uf(1))dt <
[y = (0™ (1) = b ())de + 80(b) <

Cf Nah(e) = k(o) I de + o).
T
Passing to the limit for k¥ — o, we obtain the required

convergence result. Theorem 3 is proved.
4 Conclusion

On the whole, the efficiency of considered methods is
defined by the quality of the corresponding approxima-
tions and connected with possibilities of the nonlocal im-
provement for the certain classes of problems . Gradient
methods (10), (11) do not have the property of the
nonlocal improvement. The Quasigradient methods
(12),(13) possess this property for the bilinear and LQ-
problems, respectively. This fact is rather important be-
cause the main part of the computer calculations is con-
nected with the «-parametric search.

The computer realization of the quasigradient method:
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(12),(13) requires additional costs for the calculation
of the symmetric matrix-function ¥ (¢, u). The expect-
ed effect of this information is connected with the im-
provement of the quality of each iteration. This theoreti-
cal prediction is justified by the results of the numerical
testing, when the quasigradient procedures (12), (13)
'show their advantages in comparison with alternative
methods.
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