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Delay-Dependent Robust Stability and Stabilization
of Uncertain Systems with Multiple State Delays
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Abstract; A new delay-dependent criteria has been proposed and a method of robust stabilization has been presented via
linear memoryless state feedback control for a class of uncertain time-delay systems with multiple state delays and nomm-bounded

parameter uncertainty . The results depend on the size of the delays and are given in terms of several linear matrix inequalities.
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1 Introduction

Dynamic systems with time-delay are common in
chemical processes and long transmission lines in pneu-
matic, hydraulic, and rolling mill systems. A major prob-
lem in the analysis and design of this class of systems is
related to their stability and stabilization using linear feed-
back.

Recently, some researchers have proposed some useful
techniques to analyze the asymptotic stabi]itym ~[4] and to
determine a linear stabilizing feedback control law, see e.
g.[5] and references therein. Most results of the robust
stability criteria are based on the system matrices norm
approach and most robust stabilization results obtained via
Riccati equation approach are independent of the size of
the delays(i.e the time-delay is allowed to be arbitrarily
large) and thus, in general , are conservative, especially
when practically existing time-delays are small. In addi-
tion,a common feature of the methods based on the Ric-
cati or Lyapunov equation is that the tuning of several pa-
rameters and/or a symmetric positive definite matrix is re-
quired, but no tuning procedure for such parameters and
matrix is available.

This paper deals with the problem of robust stability

and robust stabilization controller design for a class of un-
certain delay systems with multiple state delays . The major
contributions are divided into three parts. First, it gives a
new criterion of the delay-dependent asymptotic stability
using the LMI approach. Second, it treats directly the un-
certain linear systems with multiple state delays. It makes
it possible to judge the asymptotic stability of uncertain
linear systems with multiple state delays. Third, it is
shown that the stability can be determined through the fea-
sibility of related LMI and the controller can be designed
by a simple procedure so long as the solutions of related
LMI are obtained.
2 Systems and preliminaries

Consider uncertain time-delay systems described by the
following state equations;

(1) =[Ag+AAg(e) 1x(e)+ [ B+AB(t) Jult) +

1

<

LA; + AACe) ]2 (e = 7)),

£

x(e) = ¢(e), ¢t € [-17,0]

(1)
where x(t) € R" is the state, u(z) € R™ is the input,
A;(i = 0,1,-+,1) and B are known constant matrices

with appropriate dimensions, AA;(¢), and AB(¢) are ma-
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trix functions representing the uncertainties in A;, (i =
0,1,-+,1) and B. 7; denote the constant time delays sat-
isfying
O<sr<7, i=1,",1 (2)
In the following we will let 74(¢) = O to describe the
non-delay term. $(¢) is a smooth vector-valued initial
function. In this paper, we assume that the uncertainty
can be described by
[Ado(2) AB(1)] = DoFo(t)[Ey E,J,
AA;(t) = DF,(DE;, i =1,-,1, (3)
where Fo(t) € R0 and F,(1) € R*4s are unknown
real time-varying matrices with Lebesgue measurable el-
ements bounded by
FE()Fo(2) < I, Fi(e)Fy(1) < I, Yo (4)
In the following, for simplicity, we will let
Ai(t) = A + 0A;(1),
B(t) = B+ AB(1), i = 0,1,,1,

Definition 2.1 The uncertain delay system (1) is
said to be robust stable if the trivial solution x(¢) = 0 of
the functional differential equation associated to (1) with
u(¢) = Ois globally uniformly asymptotically stable for
all admissible uncertainties A4;(t), (i = 0,1,-++,1).
The uncertain delay system(1) is said to be robust stabi-
lizable if a feedback control law can be found such that
the resulting closed-loop system is robust stable.

We end this section by recalling several matrix in-
equalities which will be essential for the proofs in the
next section; see,e.g.[6].

Lemma 2.1 For any z,y € R" and any positive
definite matrix X € R"*"

- 22" < "Xz + yT Xy,

Lemma 2.2 LetA,D,FE and F be real matrices of
appropriate dimensions with | FIl <1.Then

a) For any scalar e > 0,

DFE + E'F'D" < ¢'DD" + ¢E'E;

b) For any matrix P >0 and scalar € > 0 such that e/

- EPE" > 0it holds
(A + DFE)P(A + DFE)" <
APAT + APE"(el — EPE")"'EPA" + eDD";

¢) For any matrix P > 0 and scalar ¢ > O such that P

— eDD" > 0it holds
(A + DFE)"P-'(A + DFE) <
A™(P - eDD")'A + ¢7'EE".
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3 Main results
Theorem 3.1 Consider the uncertain delay system
(1) with z(¢) = 0. Given scalars 7; ,and r satisfying 0
< 7; < T ,then for any time delays ; , it is robust sta-
ble if there exist matrices X > 0 and X;; > 0 and scalars
75 > 0,00 > 0,0; > 0 satisfying the following LMI:
S H H, G

H -5 0
S ;) = < 0, (5)
1(7;) oo -4,
" 0 0 -1
ia= 1,2,”"l’ ] = 0," ’l5
where
!
Ti = ZXLJ’
j=0
) !
S = D AX + X2 AT + agDo DY +
i=0 i=0
! ]
Z(ai + O'i)DiD’{ + ZAL‘T;'A?,
i=1 i=1
H, = [XE} XET XET],
Jl = diag(aol,all,'",all),
H, = [A\T\ET AT,E; ATE]]

Jo = diag[ (0,1 - E\T1E]) (021 - E2THE}),
,(od - ETED],

G, = [XA§ XE§ XAl XEf-- XAT XEI],

L = diag(XiO - ﬂioDoDoTymol,"',

Xy - quDDT, qal) (6)

G =1[r16 1,6, 7,6],

L = diag(L;, Loy, ).

Proof  Consider the unforced time-delay system of
(1) ~ (4) with u(t) = 0. Letx(t),t = 0be the solu-
tion of linear time-delay system (1) if the initial time
and state are 0 and $(:) , respectively. Since x(¢) is
continuously differentiable for ¢+ > 0, using the Leibniz-

Newton formula, one can write

0
3 = = _f_ (s + 0)d0 =

0 Ui
2(6) - | {240+ 0)ule - 7+ 0)}o.
% j=0
for ¢ = 7;. Then the unforced system (1) is equivalent
to the following systemm :
i

0 = 2A0x0 - X A0 -

i=1Y -7

{i)ﬁj(t +0)x(t - T + 0)}(‘19,
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x(t)=¢(t)’ te[—zryo]y

where ¢(t) is a smooth vector-value initial function.

Hence, the global uniform asymptotic stability of last
systems will ensure the global uniform asymptotic stabil-
ity of the original system (1) ;see,e.g.[5].Choose the
Lyapunov functional candidate as

V(x,t) = «7(¢)Px(t) + W(x,t), (7)
where P is a symmetric positive definite matrix and

Wi = 230 [

Lle‘f't

xT(s)Qijx(s)dsdG.

Then the time derivative of V(x,t) along the trajectory
of the above system is given by

V(x,t) = xT[PZl:;L- + (iﬁi)TP]x -

S 3[ 2 FLOF 1 0)a -

i=l j=0Y =T;
T + 9)do + W(x,t) (8)
where
W(x,t) =

! L

EZ x'(2) Qo (1) -

! !

212‘]‘ T(t—rj+0)Q,~jx(t—rj+6)d0.

Using the lemmas given in Section 2, we have

0 ==
" 24TPAA (1 4 0)a(t - 1 4 0)d6 <

= 0 =
" P APATPy +I x'(t -7+ 0)AT(¢ +

0)P5'1;1j(t + 0)x(t - 7; + 6)d6.

1
Let W; = >, P;. Using Lemma 2.2, we obtain
j=0

AW AT(t) <AWAT + eDDT +
AWE(e] - EWET)'EWAT
for any €; > 0 with
ed - EWET >0, i =1,",1 (9)
and
T(t + rj)PU J(t + 7)<
AT(P; - &;DDI)'4; + €5'ETE;
for any &; > 0 with
P; -~ §DD] > 0,i = 1,++,1,j = 0,1,,1.
(10)
Let

Vol.16

Qi = AT(P; - &DD])'4; + §5'ETE;.
Hence we have
Vix,t) <

T(t)iPZA + EATP +

i=0

Z (a;PDD'P + «7'E'E,) +

i=0

i
ZT,P(ALW,A’{ + ElDlDT)P +
i=1

!
Zr,-PAiWiE?(EJ - EWED)'EWAIP +
i=1

3 i
22 ulAT(P; - £DDY) 14 + 6'ETE 11 x(s) =

;F(;;Mx(t), (11)

where a; > 0,i = 0,-**,1. Let X = P! we have

MX = ZAX + XZAT + Z(aDDT

i=0
{
o' XEIEX) + 2 v/(AWAT + eDDY) +

i=1

tAWE (e - EWEY)'EWAT +

Hr_MN

!
TLZXI‘lJ’I‘(PU -

o

EDD])AX +

(=1

i

i
Ty §;XEJEX .

=0

Setting X; = 7P, 9y = 7.£,0; = t€i,i = 1,7, 1;

Jj = 0,1,---,1, and using Schur complements, we can
find that M < 0 and inequalities (9) and (10) hold if
the inequality (5) holds. So, if LMI (5) holds, then the
uncertain time-delay systme (1) is asymptotically stable.

Q.E.D.

This theorem provides a delay-dependent criteria for
robust stability of uncertain linear systems with multiple
state delays in terms of the solvability of linear matrix
inequalities . In paper [1 ~4],only the asymptotic stabil-

'M~

._.
\

L=

ity of the systems with a single time-delay can be deter-
mined. Based on this LMI based approach, it becomes
poosible to determine the asymptotic stability of time-de-
lay systems with multiple state delays.

Corollary 3.1 Consider the unforced time-delay
system (1) with A4;(t) = 0,i = 0,1, +,1,u(t) =
0. Given scalars t;, and 7 satisfying 0 < 7, < 7, then
for any time delays z; , it is robust stable if there exist
matrices X > Oand X; > 0,i = 1,2,--+,13j = 0,1,
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**, 1, satisfying the following LMI:

[ ! J !
ZA»'X+XZA?+ >> AXAT €
i=0 i=0

i=1 j=0

< 0,(12)
G" -L
where
G = [XA§ xaAT - x47],
L; = diag( X0, X1, Xa)
G =I[16 1,6, 7,61,
L = diag(L,,L,,"*-,L;).

Theorem 3.2 Consider the uncertain time-delay
system(1) . Given scalars 7,,and r satisfying 0 < 7; <
7, then for any time delays z;, this system is roubst sta-
bilizable if there exist matrices X > 0, Y, and X; >0
scalars 7; > 0,0; > 0,q; > O satisfying the following
LMI.

S H H, G

HY - J 0 0
Solzy) =| . ' . |<o

(13)
where T; is defined as (5) and

! i
S= 2D AX + X>, AV + BY + Y'BT 4+
(=0

i=0

! !
aoDoD + 2> (a; + 6;)DDT + D>, ATAT,
i=1

i=1

H, = [XE] + Y'E} XET XET],
JI = diag(aol,all,"',atl),
Hy, ='[A\T\ET A,T,E} ATE"],

Jo = diagloyI -~ E\T\E{,0,] — E;T,E],+,
ol - EthE”,

G, = [XA§ + Y'B" XE} + Y'E} XxAT
XET -+ xaT xET],

L; = diag( Xy — 7ioDoDo, ol >+,
Xy - 7DDT, pal),

G=1[r6 1,6,

L = diag(L,,L;,"**,L;).

Tlcl] ’

Moreover, a suitable stabilizing control law is given by
u(t) = YX‘lx(t).
Proof With the control u(#) = Kx(t), the systems

(1) becomes
x(t) = [A(; + DoF(l)Ec]x(t) +

E[A; + DF(1)E1x(t - 7;) (14)

where
Ac = A+ BK, E; = E,+ EK.
So, from the Theorem 3.1, we can immediately gain this
Q.E.D.
This theorem provides a delay-dependent condition for
robust stabilizability of uncertain linear time-delay sys-
tems with multiple state delays in terms of the solvability

theorem.

of linear matrix inequalities. This is contrast with the re-
sults such as in [5]; which developed delay-independent
criteria for robust stabilizability of time-delay systems in
terms of the solution of a modified parametric Lyapunov
or Riccati equation. But those equations can not be di-
rectly solved and the parameters need to be tuned, the
tuning is very difficult when there are more than two pa-
rameters . However, LMI can be numerically solved very
efficiently and thus no parameter needs to be tuned,
Moreover, the time-delays are always bounded, so our
results may be less conservative than the results which
are delay-independent.

From these theorems, the upper bound of time delay r;
can be determined such that the uncertain time-delay sys-
tem is stabilizable when all other time-delays r;,i = 1,
o, 0,1 s j, are known.

In fact, the largest value of r; can be computed by
solving the following LMI problem when all other time-
delays 7;,i = 1,-**,1,i % j, are known.

maximize z;

subject to S,(z;) < 0,X > 0,X; > 0

and 73 > 0,0, > 0,0; > 0.
which is a quasi-convex optimization problem and can be
solved using LMI Lab.

We can also determine the upper bound of = by solv-
ing the following LMI problem

maximize ¢

subject to S,(7; = 7) < 0,X > 0,X; >0,Y; > 0

and 7; > 0,0; > 0,2, > 0
which is also a quasi-convex optimization problem.

4 Examples
Consider the uncertain time-delay system with
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. [ — 1 + 0. 16sinz 2 dent LMI-based methods of analyzing the robust stability
0= 0 1 - 0.16cost! and designing linear memoryless state feedback con-
- 0.6 -0.4 trollers. A new sufficient delay-dependent condition for
A1 = - 0 - 0.0400st] ’ the uncertain linear system to be globally uniformly
= [ 0. 0dsint 0 asymptotically stable has been given in terms of an LMI.
A=l o osh
B=1[1 11", =(¢) = (), References
t € [-17,0], 7 = max(zry,7y)

and the constant time-delays are bounded . The uncertain-
ty can be described by

I [a4 0]
0= "= 1o _o0.4l”
0 0
Dl = El[ ’

0 0.2
_— [azol
2 = = O O ]

Fo(1) = Fus) = [$nt g
0 - cost

By applying Theorem 3.2, it is found that this system is
stabilizable if 7 < 0.5061. If we know that z; = 0.1,
the upper bound of time-delayz, is 1.256 such that this
system is robust stabilizable.
5 Conclusion

This paper deals with the problem of robust stability
and robust stabilization of uncertain linear systems with

multiple delays in state. We have developed delay-depen-
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