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CONTROL THEORY AND APPLICATIONS

Estimates of Transient Behavior for Linear Systems
with Input Delay and External Disturbance
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Abstract: Estimates of transient behavior for linear systems with input delay and external disturbance are established . Our

results provide effective methods for quantiative stability analysis of delayed systems.
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1 Introduction

Delays and random external disturbances are ubiqui-
tous and often become sources of instability. In the past
few years, many contributions have been devoted to the
study of delayed systems' '~ 7). An important fact in engi-
neering is that uncertain delayed perturbations are gener-
ally imposed on the control signalsm .So, it is necessary
to obtain the stability information of practical closed loop
systems . Since the information about both stability prop-
erties and transient responses of retarded functional dif-
ferential equations (RFDE) is important to practical en-
gineering systems design, it is necessary to achieve the
decay estimate of transient responses of retarded systems
with external disturbances. There are some works for ob-
taining the information about transient responses of spe-
cial classes of RFDE. Mori et al.!!) calculated estimates
on the decay rate of linear time invariant (LTI) point
delay systems. Lehman and Shujaeem presented esti-
mates on the rate of decay of solutions of time-varying
RFDE and generalized the results in [3] or [4].During
the process of deriving the robust stability criteria for dy-
namical systems including delayed perturbations, Wu and
Mizukami™! get a decay estimate for such special class
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of RFDE. Here, we will present our results that ensure
the trajectory of retarded linear systems with external dis-
turbances within certain bounds.

In this paper, we present an extension of the ones re-
ported by Halanaym ,and estimate the decay rate of tran-
sient behavior for linear systems with input delay and ex-
ternal disturbance.

2 Problem formulation
If u:2— i is a continuous function, then D* (u) de-

notes the right-hand derivative of u and

w e = oes[qgo]{l u(t +6) 11, (1)

Let || - || denotes the Euclidean nom. For any A €
", || A || denotes the matrix norm of A induced by
the vector nomm || + || . A;(+) denotes the ith eigenval-

ue of the square matrix (*),Re A;(+) its real part (1<
i< n). Am(*) and Ay, (+) are defined as follows.
Amax(') = lmax {ReAL(.)} ’

sisn

Amin(+) = min {ReA;(+)1. (2)

lgign
Consider the following linear system,
{D+ x(1) = Ax(2) + Bu(t — h(2)) + e(t);
x(tg) = =

(3)
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where x is the state of the system (assumed to be avail-
able for feedback), the vector u represents a control
siganl,and € (£)( || e(¢) || < ) denotes uncertain ex-
temnal disturbance at time ¢. The time delay h(¢) is any
nonnegative and bounded function.Let0 < h(t) < h/2
such that £ is any constant. The matrices A , B have com-
patible dimensions and the pair (4, B) is assuned to be
stabilizable . So, a memoryless feedback law can be de-
scribed as
u(t) = Fx(t). (4)
Therefore, the closed loop system (3) and (4) can be
described by the following differential difference equa-
tion of the form
D* x(t) = Ax(t) + Bx(t = k(1)) + () (5)
where B = BF and A + B is an asymptotically stable
matrix. We assume that the solution of system (5) is
continuous with initial condition given by
x(t) = ¢(t), t € [t - h,10]. (6)
3 Main results
Main results are obtained in the following theorems.
In order to derive results more conveniently , we first pre-
sent a lemma.

Lemma Suppose that u(¢) is continuous nonnega-
tive function on [ ¢y — h,B), and satisfies the following
inequality

D* (u(t)) < - piu(t) + up vV u(t) +
pall w5 for t € [29,8), (7)
where z1; > p3 = 0,45 = 0and h = 0. Then there ex-
ists a positive number 6, > O such that, for every ¢ € [ ¢,
- h,p),
u(t) < ao+ [ u lnexpt-00(s - 10)}, (8)

2
12

= 7 9

"0 40o(py - #366°h - 6p) )

and o > O satisfies the following inequality

g(00) = uy — pae®t — 6y > 0. (10)
Proof Since g(0) = p; — p3 > 0, there exists a
positive number §, > 0 such that g(d,) > 0. Now, let &
> ag be arbitrary and, for every ¢ € [ty - h, ), define

(1) = u(t) —a - | U, | sexpl= 0o(t - o)},
(11)
Assume that 7 = {1 1(t) > 0,t € [t h,B)}. If
T -+ @,then we can getf = inf{ T}. It must be that ¢
€ [t,8),1(¢t) = 0and I(t) < Ofort € [ty - h,

t]. So,forevery t € [1o - h,t],
u(t) <o+ llu [l zexpt- 0ot - 1)} <
(a + Il u, lsexpi- 6ot - 1))’ <
u(t)elh. (12)
Therefor, we obtain that
D* (1(2)) <
- ,ulu(f) + v u(l) + ,u3u(2)e007' +

0o Il u, | wexpi- 0oz - 20)} <

= ylu(Z) + po v u(l) + ,u3u(f)eaoﬁ +
eo(u(i) = a) =
- g(0)u(t) + v u(i) - afy <

2
M2
- oo+ 2o (gy <~ (@ - @) < 0. (13)

This implies that there exists & > O such that 1(8) <
I(t) =Oforeveryt € (¢,t +6) @ (¢,B). This con-
tradicts the definition of ¢. Therefore, T = @ or

u(t) < a+ | Uy | zexpl— 6o(t — to)}. (14)

Finally, let « — « to find that (8) is established.

Q.E.D.

Remark 1
[3,4].

For system (5), since the matrix A + B is asymptoti-
cally stable, in the light of the Lyapunov stability theory,
Lyapunov-type

(A+B)'™P+ P(A+B)=-¢ (15)
holds for any symmetric positive definite matrix (; the

The above lemma is a generalization of

solution P is also a symmetric positive definite matrix.
We take the following positive definite function as our
Lyapunov function

V(x) = x"Px (16)
and let

1 1
e= le(e)Il, 1 = Ama(P72QP72),
- 1 —
e(hl P2B |l + 2/ 2um(P)),
uy = B(| P3BAP-% || + || P2B2PT ).

Thus, we have the following theorem.

H2

Theorem For closed loop system (3),(4),if ¢, >
#3 = 0, then there exists a positive number ¢, > 0 such
that, for every ¢ = 1o — h, (8) ~ (10) are established.

Proof From(16),we obtain that
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D* V(x(t)) = 35
Dt xT(1)Px(t) + x'(t)PD* x(1) = 2; — |Respo sc.cur e
_ xT(t)Qx(L) - 2xT(t)Pl_-](x(t) _ 3 \ \: ....... decay ¢stimat curve
x(t = k(1)) +22T(2) Pe(t) < l'i \\ et
T -1 S T

Lx (t)PP Qj(:)j 0.50 {\; L7 .,.5

ZJL_ | «*(¢)P2P2BD* (x(s)) |l ds + Timels

(S

1 1
20 Prx(e) 1 P2 lle <

=

OPPn(e) + 21 PEx(e) | I P2l e +
21 PEx(e) |

"l P2B(Ax(s) +

t=2

Bx(s = h(s)) +e(s)) lds <

o V(x(0) + 20 PEa() |l PRl e+

21 PEx(e) | [ (1l PABAPEPEa(o) | +
U3

| PAB2P3x(s - h(s)) | + | P2B | e)ds <

—aV(x(2)) + o/ V(x(2)) + pall Vi .

Q.E.D.

The above theorem presents an estimate

Directly from lemma.

Remark 2
of the trajectory bounds of the solution of the linear sys-
tem with state delay and external disturbances. More-
over, the decay estimate is dependent on the time delay
and the bounds of random disturbance.

4 TIllustrative example
Example Consider the following system described
by (3),(4),where
0 1 0.3
A = [ ], B = [ ,
-6 -3 0.1
then we can obtain;
[1.4515 0.0989
0.0989 0.22401°
[-1.1937

2.2510 0.3135]
~10.3135 1.16071°

F - 0.1396].

For (5) and (6),let h = 0.01,e(z) = [i]o.z sin
1000z, from(18) ~ (20) ,we have p; = 1.0769, y7 =
0.4840, 43 = 0.0085,that is p; > p3. Here we have
@ = 0.2084,0, = 0.6,¢"(¢) = [1 2],2 € [1o -
h,to], such that,for every ¢ = to - h, (8) ~(10) are
established . Fig. 1 describes V(x) and the decay estimate

of its transient responses.

Fig. 1 Transient response and the decay
estimation of V' (x)

5 Conclusion

Decay estimates, which are dependent on the time de-
lay and the bound of external disturbances, are derived in
this paper for the linear system with input delay and ex-
ternal disturbance. Our results may provide an effective
quantitative analytical method for the transient response

of practical engineering systems with delays.
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