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Generalized Pole Assignment Self-Tuning Controller
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Abstract:; In this paper, we derive predictive models of system and auxiliary system from double constant alterations re-
spectively . The controller based on d -step ahead predictor can locate the closed loop poles at desired positions, whose parameters
are adjusted by estimations of plant parameters that are separately estimated. An auxiliary estimator is developed to avoid ill-con-
dition in solving Diophantine equation. Simulations show that these control systems have better dynamic responses under existence
of measurable disturbance.
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1 Introduction

Pole assignment and generalized minimum variance
are still two fundamental methods of self-tuning con-
troller, which easily deals with non-minimal phase sys-
tems. Pole assignment self-tuning controller (STC) can
permit users to pre-assign closed-loop poles in the de-
sired positions to guarantee a good performance for the
control system. Generalized minimum variance (GMV)
STC has improved some performance of minimum vari-
ance controller at the expense of control accuracy. A-
mong the self-tuning controllers addressed in the pa-
persmm, there exists the influence each other between
the choosing controller weighting factors and the identifi-
cation of plant parameters. In this paper, we derive pre-
dictive models of system and auxiliary system from dou-
ble constant alterations respectively. The controller based
on predictor can locate the closed loop poles at desired
positions and has capability of feedback and feedforward
control. An auxiliary estimator is developed to avoid ill-
condition in solving Diophantine equation. Simulations
show that these control systems have better dynamic re-
sponses under existence of measurable disturbance.
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2 Description of system

Assume that a process is characterized as follows

AG)y(k) = B(z)u(k - d) + By(z™") -

v(k - dy) + C(z7)&(k), (1)
where y(k),u(k) and v(k) are the output, input and
measurable disturbance sequences of system respectively,
d and d, are the delay of control model and disturbance
model respectively (assume d, = d),&(k) is assumed
tobe a zero mean sequence with finite variance polyno-
miasl.

2

ACz?Y) =1+ a1zl + agz 2 4+ 4+ ez~ ",

B(z7™") = by + bzl 4 byz 24 - 4 bz~ ™,
By(z7') = bg + biz' 4 bjz 4 e 4 bz ™,
Cz) =1+czl + 022+ - +cpz™.
The objective of controtler is to minimize the cost
function
J=E{PCVy(k+d)+ S(zVv(k + d - dy) -
R(Dw(k) + Q(z7)u(k)}? =
E{®,(k + d)}2. (2)
where @;(k+d) = P(z"D)y(k+d)+ S(zVDo(k +
d-dy) - R(zDw(k) + Q(z")u(k) and P(z7"),
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S(z1),R(z") and Q(z7!) are the weighting factors
of output y(k) , measurable disturbance v(k), setpoin
w(k) and input u(k) respectively.
3  Establishment of self-tuning models
based on d- step-ahead prediction
Define an auxiliary system as
&k +d) = P(z)y(k + d), (3)
Assume
C(z) = AGYF (") + 279,271, (4)
Pz C(z™") = AG D F(2Y) + Z279,(271),
(5)
where
Fi(z') =1+ fiz7b 4+ fhz2 4 oo +ffyrz'”fi,
Gi(z_l) = go + gilz_l + gizz_z + ot 4 gf,gZ'"g,
(i =1,2)
degF (z7!) = degF,(z7") = d - 1,
degG,(z7") = na,
deng(z'l) = max {np +nc —d,na - 1}.
Equations (3),(5) and equations (1), (4)can be used
to derive the system and auxiliary system based on d-
step ahead output predictions respectively.
B(z"Y)F(z1) Bz(Z_l)Fl(Z_ﬁ .

y(k +d) = u(k) +

c(z™) c(z™")
|
v(k + d —-dy)+ Gcl((zj.)zy(k) +
Fi(z7)&(k + d), )
-1 -1 _1 =
s
z—l
v(k +d-dy) + %%((z_ls)y(k) +
Fy(z)E(k + d). 0

their optimal predictors and errors as follows are

y*(k +d) =B Fi(zDu(k) + By(z")F(z7") -
v(k +d - dy) +G(z7)y(k) +
C(zN)y" (k +d), (8)

®* (k + d) =BGz F(z ) u(k) +By(z7") Fp(27) -
v(k + d - dy) +Gy(z7")y(k) +
C'(zH®* (k +d) 9)

where C'(zY) =1-c(z).

Let
e,(k+d) = Fi&(k + d), (10)

es(k +d) = F,6(k + d), (11)
y(k + d) = Bz )Y F(zDu(k) + By(z")Fi(z™) -
v(k +d - dy) + Gz )y(k) +
C(zYy"(k +d)+ ey(k +d), (12)
®(k + d) = Bz")Fy(z)u(k) + Bz Fy(z™")
v(k+d - dy) + G(z")y(k) +
Clz -1)®*(k +d) + ep(k +d), (13)
y(k) = X2(k - d)8,(k) + e, (k) (14)
where
XT(k-d) = [y(k-d),y(k=d=1),, u(k-d),
u(k-d 1), ,v(k-dy),v(k-dy - 1),
eyt (k=1), y" (k=2),],
0,(k) =[gd, gl g2, bfos bfis s bafts
bzﬁ’...’ —c1y —02,"']T
while system is slow time variable, the recursive least

square method(RLS) is adopted as follows.

Z(k) = X(k - d)'O(k) + e(k), (15)
@ (K) =0 (k-1)+K(k) -
[Z(k)-X"(k-d)6r (k-1)],  (16)

K(k)=P(k-1)-X(k-d)B +
XT(k -d)P(k -1)X(k -d)]"t, (17)
P(k) = [P(k-1) - K(k)X(k - d) -
P(k-1)1/8.
4 Design of controller
From the auxiliary system Eq.(7) to Eq.(2)
B(z") Fy(27")

(18)

J =E{ C(Z—l) _u(k) +
-1 -1
Bz(ZC()zIf%z )'v(k vd—dy)+
-1
S8 - RGw(k) +
Sz Dok +d-dy) + 0z Du(k)}? +
ElF(zVek+ 2=+ ], (19)
where
B(z V) Fy(z7!
5 =B 2B
—1 -
%v(ls +d-dy) +
-1
) (k) - Rk +

SG ok +d-dy) + Q(z7 D u(k)?,
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Jo = ElF6(k + ).
The first term J; is the controllable part,and the second
one J; is uncontrollable.
To minimize J ,let J; = 0. Then optimal control law
can be derived from
@ (k+d) + C(zDS(zo(k + d -
dy) - R(z"Dw(k) + Q(z"Hu(k)] = 0, (20)
or
[B(z")Fa(z7) + €z Q") Tulk) +
[Bo(z D) Fy(z7") + €(z7)8(z )]k + d - dy) -
C(z)R(zNw(k) + G,(z71)y(k) = 0. (21)
Egs. (20), (21)are the optimal control law by minimiz-
ing the cost function(2).
5 Determination of weighting factors and
realization of pole placement
The control law Eq. (20) generates the closed loop e-
quation
(PB + AQ)y(k + d) =
BRw(k) + (- BS + B,Q)ov(k + d - dy) +
(B Fy + CQ)6(k + d). (22)
Let
P(z")B(z") + Q(z)A(zY) = aT(z7),
(23)
where T(z7") is the closed loop poles polynomial which
is desired and A is an adjustable constant (for simplifica-
tion,letA = 1). Deformation of Eq.(23) can be
P(z)B(z)F(z7") + Q(zH[c(z™) -
Z7%6,(z7)] = AT(z"Y) Fi(z71). (24)
Egs.(23) and (24) are generally termed as Diophantine
equations. It is clear that Eq. (23) cannot be solved in
general unless A, B are coprime polynomials. Using an
auxiliary estimator and considering the control in the
case of real-time and estimation on -line of the plant, we
substitute the recursive least square estimation method for
directly solving Gauss equation.
Define a new variable

Z,(k) = T(z"Ve(k), (25)
where e( %) can be a known white noise sequence.
Thus Eq. (22) becomes
Z(k) =B (z7e(k)P(z7") +
Az e(k)Q(z), (26)

Z2(k) =Xk - 1)O(k) (27)

where
X(k-1) =[B(ze(k),B(z7")e(k ~ 1),
Az e(k), Az )e(k - 1),,1%,

O(k) = [PO’PI’P2""9‘10"11""]
and Z,(k) = Z(k).

Using the recursive least square (RLS) estimation
method, P, () can be obtained indirectly.

For overcoming effects arising from measurable distur-

bance, let disturbance’s coefficient is zero.

B(z1)S(z™") + B(z71)Q(z!) = 0. (28)
Customarily
s = 200D, (29)
or
L B(D)F() Q)
S = TR RG e
For correct tracking,R is chosen as
R(1) = P(1) + A(1)/B(1), (31)
or
e(M[cQ1) - 6,(1)]
R(1) = P(1) + B(1) F,(1) . (32)
6 Simulation
Consider a non-minimal phase system
y(k) - 0.618y(k - 1) - 0.36y(k - 2) =
0.09u(k - 2) +0.1166u(k - 3) +
0.60(k —3) +0.4v(k - 4) + £(k). (33)

Assume that Stochastic white noise is E {£(k)} = 0,
E{&*(k)! = 0.4, the measurable disturbance v (k) is
square wave whose period is 140 and the closed loop
polynomials is T(z7!) = 1 - 0.5z"!. Simulation is
shown in Fig.1 and Fig.2,representing as output y( k),
control action u( k) respectively.

120 160 200 240
Reference input w(k) and output y(k)
7 Conclusions

—
Fig. 1

To overcome the difficulties in the influence each oth-
er between the choosing controller weight factors and the
identification of plant parameters, we introduce the dou-
ble constant alterations into systems and derive the mod-
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Fig. 2 Control action «(k)
els of system and auxiliary system. The controller based
on predictior can locate the closed loop poles at desired
positions. An auxiliary estimator is developed to avoid
ill-condition in solving Diophantine equation. Simula-
tions show that this control system has better dynamic re-

sponses under existence of measurable disturbance.
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