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Abstract: An abstract maximum principle, which can be applied to elliptic systems and periodic-
parabolic systems, is given. Accordingly, a generalization of the Hess-Kato theorem on principal
eigenvalue is obtained, and is applied to study semilinear problems.
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1 Introduction
We study the existence of positive periodic so-
lution U € C(Q7) of given period T > 0 of the fol-
lowing system:

(2 + A@ED)U = fz t0), inQr,
U= 0, on 9f) x {01T],

U(-,0) = U(-,T), on Q

(1.1)
where Qr = Q x (0,T), f € C(QrxRPRP),
A(z,t, D) =diag(D,, Dy, - , D,), and

Dyu= - E as;}(z, t)0;ju

(1.2)
+Y b (. )9ju + M (z, t)u,
k=1,2,.-- ,p are second order uniformly ellip-
tic operators with coefficients agf) = a}’:’ \ b;k}, c®) >

0 belong to the real Banach space F = {w €

= Supported by CNSF and MCME.

C(Qr)lw(-,0) = w(-, T)}.

We assume that 2 is a bounded domain with
smooth boundary in RV,

The solution U is said positive, if all components
of U = U(z,t) = (wa(z,t), -
Y(z,t) € Qr.

It is well known that the related problem for

,up(z,t)) are positive,

equations has been widely studied by many au-
thors e.g., Kolesov!!l, Amann/?  Beltramo, Hess!®!,
Lazer!*!, Castro, Lazer!®! and Hessl®l.

In this paper, we follow [3], and turn to study

the linear eigenvalue problem:
(% + Az, t; D))U = AM(z,t)U, inQr

U =0, on 99 x [0, T,

u(,0)=0U(,T), on 9
(1.3)
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where M € C(Qp, M(p,R)) is a real p x p matrix
-valued function, and A is the eigenvalue.

For a vector function U, we use the notations:
U > 0 means all components of U are nonnegative
functions; U > 0 means U > 0, but not U = 0, the
null element; and U >> 0 means all components of
U are positive.

The following assumptions on M are given:

i) M = (mu(z,t)) is
ie.,myp(z,t) >0, Yk # 1, Y(z,t) € Qr.

ii) M is fully coupled, i.e., the index set
{1,2,--- ,p} can not be split up into two disjoint

cooperative,

nonempty subsets I and J such that my(z,t) = 0,
in @, forkel, e J
ili) maxX;<k<p fuT max, cq mek(z, t)dt > 0.
i}
Let L be the operator —+A(z,t, D) on X = E?

ot
with domain

D(L)={U € X|LU € X,U =0 on 89 x [0,T]}.

Let Y = D(L) be the Banach space with the
graph norm.

Our main results read as follows.

Theorem 1.1 Under the assumptions i), ii) an
iii), there exists a unique positive eigenvalue A\; > 0
and eigenvalue ¢ >> 0 such that

1) L = M Mo.
Moreover, we have

2) dim ker (L — A\ M) = 1.

3) The algebraic multiplicity of A;* of the com-
pact operator L~' M is odd.

4) VA > 0 if it is an eigenvalue of LU = AMU,
then A > A;.

Theorem 1.2 Under the assumptions i) and
ii), if Ay > 0 is the first eigenvalue for the problem
LU = AMU, then Y0 < X < Ay, Yh € LYQ7,RP),
with ¢ > N, and h > 0 there exists unique U >> 0,
satisfying the system

LU = AMU + h. (1.4)

Now, we turn to the following nonlinear problem:

in Qr (1.5)
where f € C(QrxRP,RP) is T-periodic in ¢, and sat-

LU = A (z,t;U)

isfies f(x,t,0) = 0. Set
M(z,t) = ;—sf(z, t;0). (1.6)

Theorem 1.3 Assume that the matrix M, de-
fined in (1.6), satisfies i) i1) and iii), then there is
a bifurcation of positive solutions of (1.5). The clo-
sure (in R x D(L)) of the set of positive solutions
S contains a component Sy unbounded in R x D(L)
with (A, 8) € Sy, where ), is the first positive eigen-
value of (1.3). Moreover, (A, #) is the only bifurca-
tion point for positive solutions.

For p = 1, all these three theorems have been
obtained in [2] . However, in this case, assumptions
i) and ii) do not make sense, they are dropped out.

As a special case, where A(z,t; D) and M(z,t)
do not depend on t, the problem (1.3) is reduced to
a nonlinear eigenvalue problem for elliptic systems,
all the related results were obtained recently in [4],
where the Hess-Kato theorem for elliptic equations
was extended to systems.

For p = 1, the studies of the nonlinear elliptic
eigenvalue problem and of the periodic solution prob-
lem for parabolic equations (1.1) are parallel, cf [3]
and [6]. They will be the same for systems. In this
sense, all our proofs will be parallel to those appeared
in [7]. However, the proof of the Hess-Kato theo-
rem for elliptic systems is based on the Strong Max-
imum Principle for elliptic systems due to Sweers|8],
in which the irreducibility of positive operators and
the Krein-Rutman theorem are applied in combining
with a result due to de Pagter on Banach lattices|9].

In the following, we shall present a proof of the
Strong Maximum Principle which applies to both el-
liptic systems and periodic parabolic systems. With-
out concerning with Banach lattices, the following
version of the Krein Rutman theorem is applied, cf
[10](see also [11]).

Let X be a Banach space with a totally positive
cone P, let P denote P — {@}, and let T' be a positive
compact operator in X satisfying the equation:

YVx € P, there exists n € N such that
(BTN} >0, VEhE P

Then

a) r(T) > 0is a simple eigenvalue with a positive
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eigenvector ¢ such that (z*,¢) >0, Vz* € P".

b) T*¢* = r(T)¢*, for Yo' € P*.

c) |A| < r(T) VA € o(T)withA # r(T).

The paper is organized as follow: the three the-
orems in §1 are announced without proofs, because
similar proofs can be found in [7], if Theorems 2.3 and
2.4 are known. In §2 , we use the above version of
the Krein Rutman theorem to give a proof of the ab-
stract form of the Strong Maximum Principle. This
is Theorem 2.3. In §3, we present examples show-
ing how Theorem 2.3 includes the Strong Maximum
Principle for systems.

2 Principal Eigenvalue

Let X be a Banach space with a totally and

normally positive cone P. Suppose that X is a di-
P

rect sum of Banach space: X@ZX,- and Let P; be

J=1
the projection of X onto X;, and P; = P,P, j =

1,2,---,p.
Given e € P — {0}, we write X, = Uxso)\[—e, €],
and
[lz]le = inf{A > O]z € A[—e, €]}

then (X,,|l - |lc) is a Banach space continuously
imbedded in X and possessing a positive cone P, =
P n X, with nonempty interiour int(P,). Assume
A) ¥Yz* € P*, the dual positive cone in X*,
(z*,e) > 0.
Let e; = Pje, similarly, we have the Banach
P
space X, and X, =@ ) _ X.,.
i=1
Assume that L = @ Y _ L;, where L; : D(L;) -
X is a linear closed operator with domain D(L;) C
X., satisfying the following:
I) Ve > 0, (eI + L;)~" exists, and is a posi-
tive compact operator on X;. Moreover, Vz; € P,-,
Jda = a(z;,c) > 0, such that

(cI+Lj)'lzj >oes =12,
Let B € L(X, X) N L(X., X.) satisfy
II) 3co > 0, such that col + B is strictly positive.
III) None of the direct sums X; & --- @

Xjn,» 1< 73 <:+-< gk < p, are invariant subspaces
of B.

Lemma 2.1 Assume I), I1), III) and A), then
for ¢ > cp, the operator A = L;'B. € L(X,X) is
strictly positive, compact and satisfies

¥z € P, 3n, an interger < p, such that
(z*,A") >0 Vz*e€P* (2.1)

where L. =cI + L and B. = cl + B.

Proof The strict positivity and the compact-
ness of A follow directly from I) and II). It remains
to prove (2.1). Indeed, Vz € P, if, say, Pz # 0 for
all i, then

i) PiB.x=PB,z+ (c—co)Piz

> (e—cg)Piz > 0.

ii) Vj # 1 such that P;B.xz > 0. For otherwise,
B.z € X;, i.e., X; is invariant of B., which implies
that X; is an invariant subspace of B. This contra-
dicts with III).

Combining i), ii) and I), we have a; = ay(z,¢) >
0 such that

Az > oy (e; + €5).

Repeating the above argument, we have k # 1,7 and
ay > 0 such that

Az > az(e; + e; + ex).
After at most p steps, we arrive at APz > aye. Then
Vz* e P?,

(z*, APz) > ap(z®,e) > 0,

provided by A).

Lemma 2.2 Assume I), 1I), III) and A) .
Suppose that there exists T € D(L) N P such that
(L-B)T€ P, thenT = (L—-B)™! € L(X,X) ex-
ists, and is strictly positive and compact. Moreover,
Yz € P,Vz* € P*, (z*,Tz) > 0.

Proof According to the above version of Krein-
Rutman theorem cf [10] or [11], 3r(A) > 0 and
Vz* € P* such that A*z* = r(A)z".

1° r(A) < 1.

Indeed, by the assumption on Z, we have L.7 >
B.z. It follows 0 < AT < 7, so is 0 < APT <
AP1F < ... < 7. Thus

r(A)(z*,7) = ((A")P2",7) = (27, A"Z) < (2°,7).

However, according to lemma 2.1, (z*, APZ) > 0, it
follows (z*,Z) > 0, and then r(A4) < 1.
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29 (L~ B) is invertible. This is due to
LB L~ How el b,
From 1°, (I—A)~! € L(X, X), therefore (L—B)~! =

(I - AL,
3% Obviously, T is compact. From
T=3 AL
=0

and lemma 2.1, it follows that T is strictly positive.
4° Now, Vz* € P, Vz* € P*, we have
(z*,Tz) > (z*, APL;'z) > 0,
provided by (2.1).
Theorem 2.3 Assume I), II), III) and A). For

any A > 0, there exists u()\) € R!, z € D(L)N P
and z} € D(L*) N P* such that

(L=AB)zy = p(A)zy and (L*—AB*)z} = p(A)z).

(2.2)

Proof First, we apply Krein Rutman theorem
to L;l on X, there exists u;' > 0 and z, € P; sat-
isfying Lj'z; = pj 'z, j =1,2,-- ,p . This means
z; € D(L;)NP;j, and Ljz; = p;z;, and then Ja; > 0
such that z; > aje;, j = 1,2, ,p, according to I).

Second, setting T = }_ z;, we have T € D(L) N
P, satisfying T > ae, where @ = min{a;|j =
L3 g} 0

Since B € L(X., X.) and D(L) C X, we obtain
B > 0 such that BF < fe < a~!f%.

Let v = a~!3, we have

(L-MNB-)z>Lz=) Ljz; =) pz; > 0.
However, A\(B — vI) satisfies II) and III), lemma 2.2

is applied. In virture of Krein Rutman theorem,

3f(A) > 0 z) € P, 2} € P* satisfying
(L= X(B =) 'zy = H(A) 'za
and
(L* = M(B* = 1)) 'z} = @(A)~'z;.

These imply that ) € D(L)NP and z) € D(L‘)n.é"
satisfy
(L= A(B = vD))zs = F(A)

and

(L* = A(B* — 1))z} = p(A)z3.

Setting p(A) = () — Ay, (2.2) follows.

Our problem is to find the principal eigenvalue
for the weight operator B, ie., L¢ = AB¢, ¢ €
D(L) N P. This, in turn, is to find the first positive
root of u(A).

Theorem 2.4 Assume I), II), III) and A). If
X > 0, 3z € D(L)Nint(P,) such that (L — AgB)z €
—int(P,), then there exist a unique A; > 0, and
¢ € D(L)N P, ¢* € P* satisfying

i) Lo = My B¢ and L*¢* = A\ B*¢".

Moreover, we have

ii) dim ker(L — Ay B) =dim coker(L — A\; B) = 1.

iii) The algebraic multiplicity of A]* for the com-
pact operator L' B is odd.

iv) YA > 0, if it is an eigenvalue of Lz = ABz,
the A > A;.

Proof
show that the function A — p()\) in Theorem 2.3
is analytic. Second, following lemma 1.2 in (7], we
prove that u()o) < 0. Since u(0) > 0, the first root
Ay € (0, Ao] exists.

The remaining part of the proof follows from
[12].

Returning to the proof of Theorem 1.1, we have
to find A\g > 0 and z € D(L) N int(P.), such that
(L — AoB)z € —int(F.).

The assumption iii) plays an important role to

First, following lemma 3.1 in [2] , we

give the existence of such Ay and z.
3 Examples

Theorems 2.3 and 2.4 can be applied to both el-
liptic and parabolic problems. The point is to define
the space X;, the element e; > 0, the operator L; and
to varify the assumptions A) and 1), j =1,2,--- ,p.
We shall investigate the above two problems individ-
ually.

Example 1(elliptic)

Let X; = C(f2), L; be the operator D; in (0, 2)
with domain D(L;) = {u € Co(R)|L;u € C(Q)}, and
let e; be the solution of the equation:

Dju=1, infQ,
{ u =0, on 9112,
It is well known that the assumption (A) trivially
holds, because e;(z) > 0, Vz € , and that L; is
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closed.

Ve > 0, as a bounded operator (eI + L;)~! in
C(9), it maps C(Q) into C}(Q), and is strongly pos-
itive. Consequently , it is compact. However, Yu €
int(Pgy ), there exists @ = «(u) > 0 such that
u > a(u)e , by the Strong Maximum Principle. The

assumption (I) is verified.

Let M € C(Q, M(p, R)) be a matrix satisfying
i) and ii), independent to the variable t. Then II)
and III) follow from i) and ii) respectively.

Example 2(parabolic case)

Let X; = {w € C(Qp)lw(,0) = w(-,T)},

3]
Lj = a + Dj,

with

D(Lj) = {w € X;|L;w € X;,wls0x(0,r) = 0}
and let e; be the function of z defined in Example 1.

Again, {A) is trivially true.

First, we claim that L; is a closed operator in

X;.
19 Let us consider Ej being the operator L; with
domain
D(L))
={w € WH(Qr)|wlsax(o,r) = 0,w(-,0) = w(-, T)}

N +2

3
with0<2——, gq# —.
. q 2

Zj is a closed operator in LY(Qr) and has a
bounded inverse.

In fact, Yug € I/Vqu‘i N W;(Q), Vi e LY Qr),

the equation:

ij = fa in QT)
w(-,0) =ug, onQ, (3.1
w =0, on 69 x [0, 7.

has a solution
w=wi(-,t) +wa(,t)
t
= u(t,0)ug + / u(t, s)f (-, s)ds, (3.2)
0

where u(t, s) is the fundamental solution of the above
parabolic equation (3.1). According to the Li-theory,

we have

1)
lozllcy @) SCillzllomnn @, < Callwsllvz o)
<G| fllza@r) < Cullfllo,)

where
N+2
29
2) Let K be the operator u{T,0), then

O<r<1—

(3.3)

K : Co(f) = LUQ) = W, * nWHRQ) - CL(®),

because u(t,0)ug is a mild solution of the homogen-
uous equation (3.1) where f = 0.

According to the Maximum Principle, as an op-
erator in Co(Q), K is a positive compact operator
with 0 < spr(K) < 1.

In order to study D(Zj), we slove the periodic

equation:
U = w(0) = w(T) = Kug + wsy(-,T),

ie.

(I — K)up = wa (-, T). (3.4)
Since wy(-,T) € Co(Q) , there exists unique ug €
Co(Q) satisfying (3.4).
wo(-,T) imply ug € W;—% N W;ql(ﬂ) and then w €
W21 (Qr). We proved that Z]_I : f — w is the in-
verse of L;. Therefore L; is closed.

20 E;l is a bounded operator in C(Qr):

The regularity of K and

HWHC(@“T) < CHLJ'WHC(QT)-
In fact, in virtue of (3.3) and (3.4), lug||¢ is bounded
by || fllc(@,)> and by the Maximum Principle, we ob-

tain

lwlle@,) lullog,) + Cillflle@,)
<C:lflle@,) = ClliLiwlom,)-

30 Let R=L;" and L; = R~ Then L;

is closed.

Second, from R : C(Qp) = C"(@Qp). 0 < r <

N +2
1- WEL One proves that Lj“1 is compact.
q

l C(@r)

Assume that f € Pj, the positive cone in X; ,
according to the strong maximum principle of the
parabolic equation, wy(z,t) > 0, V(z,t) € Q7 and
gng(.’t)}aﬂ > 0, Vt > 0. Then, by t}}e strong posi-
tivity of K and the equation (3.4), ug € int(PCé @)
Again, by the Strong Maximum Principle, wy(-,t) €
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int(PCé(ﬁ}), Vt > 0. Therefore, 3a = a(f) > 0 such
that L' (f) = w > a(f)e.

Finally, Ye > 0, the same conclusion holds for
(eI +Lj)™t.

Let M € C(Qr, M(p, R)) be a matrix satisfying
(i) and (ii), then (II) and (III) hold.
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