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Abstract: We consider the stabilization problem of nonbolonomic systems in the vector power form. We show this class
of systems can be transformed into tinear time-varying control systems by introducing an assistant state variable. Thus, asymp-
totic stability with exponential convergence is achieved by using a smooth time-varying feedback control law. Besides the
smootmess of the control law, the design procedure is very simple and the convergence mte of each state can be specified a pri-
oni. Simwlation results show the efficiency of the method,
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1 Imtroduction

The problem of controlling norholonomic systems has
attracted much attention over the past decade . Brockett’s
necessary condition'!! for feedback stabilization precludes
the existence of continuously differentiable, time-invari-
ant, state feedback control laws for such systems,
though they are controllable.

One way to circumvent this obstruction is using
smooth time-varying feedback'®-*) and nonsmooth time-
varying feedback!*>) . It is worthy of noting that most of
the existing ( continuous or discountious} time-varying
control results, though extremely sophisticated and ¢le-
gant, suffer from the drawback that the control laws de-
signed by these methods are very comgplex and the design
procedure is far from intnitive. An alternative approach
to the stabilization of nonholonomic systms is using dis-
continuous time-invariant strategies. In [6], a non-

smooth transformation was used to develop time-invari-
ant, exponentially convergent controllers for a special
class of nonholenomic systemns including chained sys-
tems. In [7] authors developed exponentially convergent
feedback control laws for nonholonomic systems in pow-
er form using the method of invariant manifolds. The re-
sulting controllers in [6,7] are discontinuous on a super-
plane of the state space.

In [8], a smooth aperiodic time-varying exponen-
tially convergent control law was developed for a class of
nonholonomic systems including ( multiple } chained
form system, power form system, Brockett system,
¢lc. . By introducing a proper assistant state variable and
taking a coordinate transformation, a class of nonhalo-
nomic systems were transformed into linear time-varying
systems which can be designed using linear control theo-
ry. This paper is a subsequent research of [8].
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Here we deal with nonholonomic systems in the vector

power form
xgrll = U,
x%rz) = uz,

(1)
(r) Y2
xl'r': = Ai(Yllul) ri = 3!"':ns
uy

where r; denotes the onrder of tme differentiation on the
variable x,, Y; = {2} - x{W"P)7T 4, € Rixtnart),
i=3,,n.

This model is a dynamic model for nonholonomic sys-
tems by the terminology of classical mechanics, since for
the case when ry = r; = 2, the controls z; and z, are
typically generalized force variables. Eq. (1) with
1 > 2, r2 > 2 can be used to model nonholonomic
control systems with augmented actuator dynamics!®!.
We refer to (1) as a vetor power form, for it can be
viewed as a vector extension of the well known power
form model'”! .

In this paper we show that nonholonomic systems in
the vector power form can be transformed into lipear
time-varying control systems by introducing a proper as-
sistant state variable. Thus, asymptotic stability with ex-
ponentizl convergence is achieved by using a smooth
time-varying feedback control law. The design procedure
is very simple. Moreover, the convergence rate of each
state can be specified a priori. Simulations of a knife
edge system, corresponding to a five-dimensional ex-
tended power form system, are presented.

2 Stabilization of the vector power form
2.1 Control law for u,

Let us introduce an assistant state xo(¢) € R, to sys-

tem (1) such that

%o = Xi- (2)
Attaching (2) to the x; subsystem of (1) we have
xgrl‘”) = HNi. (3)

Since linear time-invariant systern(3) is completely con-
trollable, there exists a state feedback control law

x0
=- K [ (4)
iy 1 Y,

to stabilize the system with exponential convergence. By
using eigenvalue assignment technique, the spectrum of
the closed loop system can be assigned arbitrarily accord-

ing to the designer’s need.

Proposition 1 If the cigenvalues of the closed-loop
systemm (3) under the feedback (4) are assigned to be r;
+ 1 different negative real numbers — lo, — I,y = &,
where0<lo<i1<°-'<l,1,ﬂ|cnﬂ1erealwaysexists
an initial value of xo(:), denoted as x,(0), which
makes the following limit values

Cowm(e) o ml(t) | aP(e)
:—lﬂ?n zl(t) ’,-l."ﬂ z(g)’,_];_l?}, 2(¢) o =0 -1

be nonzero real numbers, where z(t) = e™'".

Proof Under the assumption of the proposition, the
solution of Eq. (3,4) cin be described by the following
equation

xo(t) Mo T Ty el

x%o)(t) -mylo -mrlirl el

A LD molgt - (-D7m, 10 fLeThe
(5)
where m;{i = 0,1,*, r;| are some real constants. Eq.

(5) can also be rewritten as follows
[

zo(t) mge *
9 (e mye™h*
. = » (6)
2§D (e) m, &%’
where
1 1
- ZU i - Z,-L
L= : : : . ()
(- Dt = (=D

It is easy to check that the matrix Z is invertible. De-
note its inverse by N = {nyl( ,1yx(r,+1). Tekingz = 0
in Eq. {6), one concludes easily that m;{i = 0,1,
ri} are determined by initial valves of systern states.
Moreover, my is determined by

rl+1

mg = nnxe(0) + 2 nux{j'n(o). (8)
2

where
- 1 -1

L

. 0
PU = Jet(L) =Y

(- o (= DAL

(9)
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Since xg is an assistant state variable, its initial value
x0{0) can be selected freely. Given any fixed initial
vale Y,(0)} of state vector ¥, since 7y is nonzero, myg
can always be set to be ponzero if we choose x;{0) such
that

rl+l

1 =
x6(0) =~ n_uEnu’-‘vgJ 2)(0)-
j=2

From (1) we know u,(t) = x{"(t). Observing
{5) we can conclude that
| u{t)

hm =
em P II:I‘

. xele)
lim —+ =
i+ 20

=7 (¢)

(10)

(___ 1) r|+1m013+1 ,

Mo,

= (- 1)j+lm°1'.h+1,j = 0,“‘,7’1 -— 1

(11)
All the above limit values are nonzero real numbers be-
cause mg = 0. The proposition is thus proved.
Remark 1 Given the numeric area of x{” (0),j =
0,~--,r1 - 1, we can choose the x5{0) independent of
%77 (0) and make mo = 0. For example, we assume
that | ={” (0) | < ;.7 = 0, r) — 1 where g; are posi-
tive constants. It can be easily verified that Eq. (8) al-
ways holds if we choose z(0) such that

1’|+]

L\
ng(0)|> lnuljz:;|nlj|qi_2.

| ki

e ot

2.2 Control law for u,
Lemma 180  Consider a linear time-varying control
system
£ = (Ag + A{t))x + (Bg+ B (t))u (12)
with x € B",u € ™. Suppose system (12) satisfies
the following properties

1) yﬂfh(z) = 0, J: 1A (e} de < e,

limB(¢} = 0, j: | By{e) I de < =

2} (Ag, By} is a stebilizable pair.
Then there exists a state feedback © = - Kx which
makes the closed system (12) be uniformly exponential-
ly stable, where X is selected to make Ag -~ BoK a Hur-
witz matrix.

MNow, the varable ¥;,z, can be considered as some
functions of time. Therefore, the nonlinear part of the

original nonlinear system (1) becomes now a linear
time-varying system

() _ Wi,

x4
{xﬁ"‘) = Ai(Ylsul)[Yz]- i=3,,n (13)
U2

If system {13) can be transformed into a linear time-
varying system in the form of (12) with the properties
1) and 2), then the feedback control law for u; can be
obtained by using Lemma 1. Before proceeding to our
main theorem, we first need to introduce some assump-
tioms .

Assumption1 A;(¥;,w,).i = 3, ,n is not i-
dentical to zero and there exists 4 p; > 0 such that
Ai(Ylsu[)
lim 220
e {moz ) D;
ve ALY, )
o 2Nl R LA Al 4 ,
J.o I {mpz)P Dillde <+ o

where D; = [dy dy d,»(,zn)] is a nonzero constant
row vector with the same dimension of A; (Y, u,),
z{t) is defined as in Proposjtion 1.
Assumption 2 p; = pj.i,f = 3,0, n5E % ]
From Assumption 1, p; can be considered as a mini-
mum relative convergence exponent of A;( ¥y, ) with
respect to z. Let us introduce a coordinate transformation

W=[1W W w17,
Y.
“’hﬁl’ﬁWz: Yz,Wi= 2 ,:'=3,“',n.'Ihetime
{moz )
derivative of W, yields
r ( xE_ﬂ) ]" ! x(iﬂ) xsl)
(moz)?} ~ Pt (mgz)* * {(mgz)}?’
(14)
{ xEri—l) )’ _ ; 1‘;E_rl—lf’ . xgl“)
LV (moz}? ~ Pito (moz)?  (moz)?

By (13), the last line of the above equations can be
rewritten as
{ x(‘;r‘—l} )' ) xi;rl.—l)

(moz)%) = PO (mozyp *

AtZ(Yl!u'l) YZ]
(moz)P Luyd’
(15)
(Aiz(Y1=u|)_ )
2 ¥ (HIQZ)PJ i) -
Then Eq. (15) becomes
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-1y (r,-1) Y Ap(Yy,u)
X - z 2 13 W]
i =l A . —_Di]= ky A ST W )1,
(G oGy + P ] (mqz)P: [ha(6) hale) -+ hugryeny ()]
(Aiz(ylsul) D}[Yz] (16) then system (13) can be transformed into the form:
(moz)*. oy W = (Ao + A)(1))W + (By + By(tDuy, (17)
D E{Aﬂ(yhul)—ﬂ,-)as I
{mgz)%
r0 1 - 0 1
0 0 1
0 0 0
palo 1 0
0 :
Ag = : pile 1 '
dy dyp dy, O Pilo
Pnlo 1 O
0 o
: pado 1
[y d d,, 0 0 0 puol
BD = [0 o 1 0 d3l'r1+1J du(rzi-l)]'r,
0 0 0 .
0 0 0
0 0 0
0 - 0
Al(t) = 0 0 ,
k() hyp(e) hBrz(t) 0 0
0 0 0
0 = 0 0
Lk (2) hpa(2) hy (1) 0 - 0 0]
Bl(t) = [0 00 hj{rzd'l)(t) O - hn(r2+l}(£)]'r_

It is easy to see that matrices A,(¢}, B, (¢) satisfy prop-

erty 1}.
It can be verified that under Assumption 2, ( Ag, By)

is a contollable pair if and only if

2
2 d&'{j+l}[PiI0]j #0,i =3, ,n. (18)
=0

It is easy to show that there always exists an [, such that

(18) holds. Indeed, Iy can be chosen as any positive
real mumber except the following values:

Ya . B4
P Pi
where ¥y, -, ¥, are s; positive real roots of the following
polynomial equation
digen)¥2 + "+ dpy +dy = 0. (19)

Ln,
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Note that if 5; = 0, i.e.,Bq. (19) does not have any
positive real roots, then ; can be chosen as any positive
real nomber.

Now we are standing at a position to state our main
result.

Theorem 1 System (1) under Assumptions 1 and 2
can be exponentially stabilized by (4) and the following
control law:

0)

%

--K [x(o)... xrz"l)

L] 2| %2 g (mUZ)PZ*
xg'a'” xslﬂ} xslr_—l) T

(mgz)P (mgz )*- (moz)?l ’ (20)

where the feedback gain vetor K, is chosen to make (A,
- ByK;) be a Hurwitz matrix.

Proof From Proposition 1 we know that x; subsystem
of (1) can be exponentially stabilized by (4) and Y7, u;
can be made the same convergent rate z = e %*. From
the aforegeing discussions we know that through a coor-

. . Y3\ . Yn ]T
dinate transformation W = Yz(moz)"s (mo2)""

system (13) can be transformed into system (17) which
is linear time-varying and satisfies the 1) and 2) proper-
ties under Assumptions 1,2. By virtue of Lemma 1,
system (17} can be exponentially stabilized by the feed-

Y
back u; = - Ko W,i.e. (20). Thus, Yo,———, ",
(mgz)™
Y,
m :) -~ comverge exponentially to zero which implies
0z)Pe

that Y,,Yy,'-, Y, converge exponentially to zero.
Hence, the result follows.
Remark 2 From Eq. (6) ~ (9}, we can deduce

r1+]

that mgz equals to n); xo( 1) + E nl,-xP'” (t). For the
fa2
convenience of physical realization of control system,
myz can be substitnted by the latter.
3 Example
In this section we show how our method is applied to
the extended power form system(”]
x{i) = Ul
xgzj = U2,y (21)

Be

It

1 - .
(:'—-2.7_)"”1 zxiul" =3, n.

which is a special case of the vector power form.
According to Theorem 1, smooth time-varying feed-

back laws can be used to exponentially stabilize the sys-
tem at the origin. Here we have ry = r; = 2,r; = 1, p;
=i-2,i=3,,nand

Aot w) = [0 2 g5pai® 0] i = 3,0,

(L

By (11), we koow that lim r:le = — {y. We get

-2 .

The controllability condition (18) is now reduced to I,
# 0, which is obvious. Thus, the control laws for ex-
tended power form system are obtained.

A practical example which can be described in the ex-
tended power fom is the knife edge system using steer-
ing and pushing imputs, whose motion equation can be
given by!"!

% = Asin$ + ricosd,
# = — Acos¢ + rising,
P

Define the variables
(%) = xcosd + ysin$,
xz=¢'-

{ %3 = x8ind - ycos$,

uy = 71— 73 (xsing - yoos$) - $*( zcosb + ysing ),

‘Uz = T,
50 that the reduced differential equations are given by

D I TIPS S ¢7).
A simulation with knife edge system has been conduct-
ed. The initial condition was chosen as
(2(0),7(0),$(0),2(0),7(0), ¢ (0))
(0,1,1, - 1,0, - 1),

i.e.
(£1(0), x2(0), %,(0), x{17(0), 2" (0))
(0.84,1.0, - 0.54, -2.39, - 1.0).
Select

K, =[6.72 11.92 6.2],
menwegetlozl,11=2.4.£2=2.8. Selectxg(ﬂ)=
2 and we get mp = 6. 12. Matrices Ay, B, are given by

o 1 9 0
0 -1 1 0

The gain vector K, is synthesized by using the pole
placement technique with the cigenvalues of Ay — By X,
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specified as A; = ~ 1.5,4 = - 1.2,4; = - 0.8. Then
we obtain the gain vector K; = [~ 1.44 4.5 - 9.9].
Fig. 1 shows the response of variables (x,y,#) of knife
edge system. Fig. 2 shows the time history of the con-
trol torques (ry,7;). Fig. 3 shows the path of kuife
edge system.

1.5
ER
b=
~ 05 ¢
g
E o
g-os5p\ 7
w

-1

-1.5

0 ) 4 3 810

timeSs
Fig. 1 The response of variables (x, ¢}

Z!&‘

-6
-3

control torques; Nm
)

0 2 4 6 8 10
time/s

Fig.2 Time history of control torques (21,72

—-02F
~04
-1.5 -1 —05 0
x/m
Fig. 3 Path of knife edge system
4 Conclusion
In this paper, a smooth time-varying feedback control
law with exponential convergence rate for nonholcnomic
systerns 1n the vector power form has been developed.
Such systems can be transformed into linear time-varying
control system by introducing a proper assistant state
variable. Thus, asymptoic stability with exponential
convergence is achieved by using a smooth time- varying
feedback control law. Besides the advantage of design
simplicity, the convergence rate of each state can be
specified a prior, The idea of introducing an assistant

state variable, which is the integral of some state, is
curcial in deriving time-varying, exponential stabilizing
control laws for nonholonomic systems.
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