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condition is presentad for the existence of Henmitian periodic positive definite (HPFD) solution. Precisely, after a proper change
of basis in the state space the condition can be expressed in terms of the notions of stabilizability and detectability. Moreover, it
i3 shorwn that when an HPPD solution exists, it is either unique, or else there are uncountably many such solutions. The result
of the paper can be considered as a valid extension of Richardson and Kwong's result to the periodic version.
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1 Introduction

In this paper, we are concemned with the periadic Ric-
cati differential equation (PRDE) (see Eq.(1) below).
In recent years, the importance of PRDE in the optimal
control, filtering and many other problems of periodical-
ly time-varying linear systems has led to the development
of a considerable research activity on the subject (see,
e.g.,[1~6] etc. and references quoted there) . Many
authors have considered the possibility of extending no-
tions and results of algebraic Riccati equation into
PRDE. For instance, various characterizations of the no-
tions for the periodic version, including stabilizability,
detectability, controllability and observability, have
been completed (see [7, 8] etc.). The well-known

Lyapunov lemma and Wonham-Ku cera theorem have
been also extended to the periodic version (see [9 ~
11]). In addition, the necessary and sufficient condi-
tions have been obtained for the existence of a stabilizing
symmetric periodic solution, a symmetric periodic posi- -
tive semidefinite solution, or a unique symmetric period-
ic positive definite sohttion to the standard PRDE, re-
spectively. For more details, the interested reader is re-
ferred to existing survey articles on PRDEs!").

This paper is devoted to the problem of what is the
necessary and sufficient condition for the existence of a
Hermitian periodic positive definite (HPPD) solution to
the standard PRDE with complex coefficients. Namely,
we consider the existence of an HPPD solution with peri-
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od T to the following standard PRDE
P(1) =- C(1)C(e) - A*(2)P(2) -

P(e)A(1) + P(:)B(:)B* (¢)P(z), (1)

where A(-),B(+), and C(-) are n x n,n x m and p

X n matrices of complex, continmous and T-periodic

functions, respectively. P(:) is the derivative with re-

spect to the time ¢, and the superscript * stands for the

conjugate transpose of a mairix or vector.

For the time-invariant version the Eq. (1) becomes a
standard algebraic Riccati equation ( ARE). For the
ARE Richardson and Kwong have presented a remark-
able result?! . In our paper, for Bq. (1) we will give
an analogous one, i.e., a necessary and sufficient con-
dition for the existence of an HPPD solution. Like
Richardson-Kwong theorem, via a nonsingular and peri-
odic state-space transformation the condition is expressed
in terms of the notions of stabilizability and detectabili-
ty. It is also shown that when an HPPD solution exists,
it is either unique, or elsc there are uncountably many
such solutions.

Before introducing our main result, we first recall
some basic notions relative to periodjc systems and, in
particular, the state-space transformation performed for
Eq.(1).

Associated with Eq. (1) is the periodically time-vary-
ing linear system

2= A(t)x + B(t)u, v = C()x, (2)
where x © C",u © C", y © (P, are the state. the input
and the output of the system, respectively. Let ¢,(¢,
r) denote the system transition matrix. In literature
@, (T,0) is named the monodromy matrix of the matrix
A(+), and its eigenvalues are called the characteristic
multipliers. It is well known that A( - ) is asymptotically
stable if and only if all the characteristic multipliers of
A(-) lie inside the open unit disk of the complex
plame!™] . Furthermore, partial multiplicities of a charac-
teristic multiplier . of A(-) are the dimensions of the
Jordan blocks comesponding to x in the Jordan form of
@, (7T,0). It is also well known that the necessary and
sufficient condition for A(+) being stable (in the sense
of Lyapunov) is all the characteristic multipliers of A(+)
lie on the closed unit disk and the partial multiplicities of
those lying on the unit circle are all 1 (see, e. g.,
[13]). The pair (A(-),B(")) is referred o as stabi-

lizable if there exists a T- periodic function mateix X (- )
such that A(+) + B(+)K{+) is asymptotically stable;
the pair (C(-),A(-)) is detectable if (4*(~),
C*(+)) is stabilizable . Note that a number of if differ-
ent yet equivalent characterizations of these notions can
be found in [8]. A T-periodic function matrix P(-) is
called positive definite (resp. semidefinite), denoted by
P{-) > 0(resp. P(+) = 0), if P(1) is positive defi-
nite (resp semidefinite) for all : € [0, T].
A state-space transformation
2(t) = F()2(t) (3)
with a nonsingular, 7-periodic and differentiable fumc-
tion matrix F(+) transfers system (2) into
42 A2+ B(Du,y = 602, (4

dr ~
where
A(r) = FY)ADF(2) - FH)F(2),
B(:) = FY{()B(1), (5)

C(e) = C{eYF(1).
Correspondingly, Eq. (1) becomes

L) | pr()e(n) - At (D) -

d:
P()A() + P()B(OB* (1)B(1),
(6)
where P(t) = F*(t)P(1)F(:).

It is obvious that stabilizability and detectability hold
under the transformation (3), i.e., (A(-),B(+)) is
stabilizable if and only if so is (A (+),B()).

At the end of this section, we specially mention a
type of important state-space transformations, that is
Hoquet transformation. Through Floquet transforima-
tion, ome can transfer system (2} into (4} with constant
matrix A () (see,e.g.,[13]).

2 Main Results

As in the time-invariant version, we shall first show
that if there exists an HPPD solution to Eq. (1). then
via a state-space transformation system (2) can be de-
composed in such a way as to separate out the unstabiliz-
able, undetectable part from the remeinder, which is sta-
bilizable. To be exact, we shall prove the following the-
orem,

Theorem 1 The existence of an HPPD solution to
Eq. (1) implies that there exists a state-space transfor-
mation (3) such that Eq. (1) becomes (6) with matrices
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A(t), B(t) and €(2) of the form

A(r) = [Ano(t) Ann],

5 = (M), e - e o,

where (A, (-), B;(-)) is stabilizable, Ay, is a constant
and diagonalizable matrix and only of imaginary axis
eigen-values. Furthermore, the solution P{(t) of Eq.
(6) takes, with respect to the above transformation, the
form
Pi(t) 0
P(1) = [ 0 Pz]’

where P, is a constant matrix, and A, (f) -
Bi(¢)B (+)P,(t) is a constant and asymptotically
stable matrix.

The following lemma will be used in the proof of
Theorem 1. One easily verifies it if taking V(¢,x) =
x " P(t)x as the Lyapunov function of the closed-loop
system (2) performed by the control

u(t) = - B (1) P(s)x(s).

Lemma 1 If there exists an HPPD solution P{+ ) to
Eq. (1), then all the characteristic multipliers of the
matrix

A,(2) =:A4(e) - B()B*(0)P(2) ()
belong to the closed unit disk of the complex plane, ad
the partial multiplicities of these lying on the it circle
are all 1,

Proof Assume that Eq. (1) has an HPPD solution
P{-). Then one can write (1) into

P(t) = Cp(e)Cp(2) — Ap (1) P(s) - P(£)Ap(2),

(8)
where

Cc(e)

- B (t)P(s)!’ )
and Ap(z) is defined in (7). By Lemma 1, using a
Floquet transformation z(¢) = F(z)#, where F(-)isa
nonsingular, 7-periodic and differentiable complex func-
tion matrix, one can transfer equation (8) into

B __ 83 (8(e) - 43 B(s) - P(D)A0,

(10)
such that Ay is a complex constant matrix, Re ¢(4,) <
0, Re a(A4,) = 0and A, is diagonalizable, where

GP(E) =

A © :
Ap = [ 01 AJ = F'(0)Ap(e) F(2) - FY(2)F(2),

Cpl2) = G(e)F(1), P(2) = F*(£)P(e) F(2).
(1)
Here o (- ) denotes the set eigenvalues of a matrix. Rela-
fions expressed by using this notation are understood 1o
apply it to each eigenvalue individually. Re denotes the
real part of a complex number. Assume that matrices 4,
and A, have dimensions & x kand (n - k) x (r - k),
respeciively. Partition
Pi(1)  P3(y)

P - [p;u) Pl
such that P, and P, have the same dimensions as 4; and
A,, respectively, Thus, (10) becomes

Pl AP P+ PJA; Py 4+ AP+ P,A,]
Py + A7 Py + PT Ay Py + A7 Py + PiAy

- C;’(?)CP(I)- (12)
We now prove severat claims:
Claim 1
Py(t) = constant, Ay Py(2) + Py(1)A; = 0.
(13)

Proof Let ¢; be an eigenvector associated with the
eigenvalue icy; of A;. Then we have that
vy (Ay Py(t) + Py(1)A)y = 0, {14)
v Py(t)y < 0. (15)
because (12) implies that 2,(s) + A5 P.(¢) +
Py(1)A; < 0. On the other hand, being P;a T-period-
ic differentiable function matrix, it follows form (15)
that v P,(¢)v; = constant and thus
v Pa(t)y, =0, (16)
Hence, (14} and (16) yield the required identities in
(13), because by the assumed properties of A, the vec-
tors { ;| constitute a linearly independent set with num-
ber of elements equal to the dimension of A;.
Claim 2
By(t) + AL Py(t) + P3(t)A; = 0. (17)
Poof We can write (sometimes the time ¢ is omit-
ted for the simplicity of writing)
CpCp = DD =
lD; 9;“91 D,} )

p; prilpy pd ™
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DID+DyDy D'Dy+ DD,
Dy D+ DDy DDy + DDy

where I is an n x n matrix and its subdivision is chosen
so that the dimensions of the two subdivisons of 7 Cp in
(12) and (18) correspond. By Claim 1 we conclude
Dy D+ D{Dy= 0, and thus Dy = O and Dy = 0.
From (12) and (18) we obtain the identity (17).

Claim3 Py(t) = 0.

Proof For a matrix M let M denote the vector ob-
tained by composing in a single column all columns of
M taken in their patural ordering. It is not difficolt to
verify that (17) can be rewritten into

dpa(t)
di

., (18)

+ (A @ L + 1,_: @ A7 )P3{(1) = 0,

(19
where @ denotes the Kronecker product, and /;is aj x
j identity matrix. One can prove that A7 @ L + .., ®
A2 is asymptotically stable because Res(A;) < 0,
Res(A;) = 0and A, is diagonalizable. It follows from
well-known Floquet theorem (see, e.g.,[13]) that the
periodic solution P5(¢) of (19) must be zero.

We now continue the proof of Theorem 1. Using
Claim 1 and Claim 3, one obtains from (9),(11) and
{12) that there exist some matrices M(+) = 0 and N(+)
s 0 such that

[F*C* CF| (1) = [M[()‘) g], (20)
{F'PBB'PF}(:):[N((;) g]. (21)
and
Pty O
F PR = | 'D‘ Pﬁ(”]. (22)
(20) yields that

c()F(t) = [C(s) 0],
for a matrix €, (+) with the same colurm dimension as
Pi(+). Next, from (21) and (22) we obmin that

N 0
(F*PFF'BY(B*F "F"PF) = [0 ol
P{'NPT! O
(F'BY(F'B)" = ]
M .

and thus

FUOB(:) = [B‘;‘)],

for a matrix B; with row dimension equal to that of
P;(+). Finally, from (11) we have that
FlAF - FF =
Ao+ (F'BY(F-'B)"(F"PF) =
[A, D]+[BlBl*Pl g]=
0 A 0
[A,+B,B,"P1 0]
0 Al
Thus, the proof of Theorem 1 is complete.
Theorem 1 presents necessary conditions for the exis-
tence of an HPPD solution to Eq. (1). We now tum
our aftention to sufficient conditions. From Theorem 1,
if Eq. (1) admits an HPPD solution P(-), then P(-)
takes the form diag (P,(+), P;) (through an appropri-
ate change of basis in state space) such that P, (- ) satis-
fies the PRDE
P(z) =- € (0)C1(2) - Anle) Py(2) -
Pi()Au(e) + Pi(8) By () By (1) Py(2)
(24)

(23)

and P, meets the following equation

An Py + PyAn = 0, (25)
where Ay, (+), Az, By(+) and C,(+) possess the prop-
erties stated in Theorem 1.

The following lemma originates from Lemma 2 of
[12]. .
Lemma 2 Ifin (25) Ay is a constant and diagonal-
izable matrix with property Res{Axn) = 0, then there
exist uncountable many positive definite solutions to
equation (25).

Now in order to obtain the sufficient comditions for the
existence of an HPPD solution to (1) we need only to
show when Eq.(24) will admit an HPPD solution. The
following theorem is well known and can be found in
[5].

Theorem 2 Eq. (1) admits a unique HPPD solu-
tion P(+) soch that A +) = A(-) -
B(+)B" («)P(+) is asymptotically stable if and only if
the pair (A(+),B(~)) is stabilizabe, the pair (C(:),
- A(+)) is detectable.

Combinizg the above results, we obtain the following
necessary and sufficient conditions for the existence of an
HPPD solution to Eq. (1).

Theovrem 3 Egq. (1) admits an HPPD solution if
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and only if, through an appropriate nonsingular, 7-peri-
odic and differentiable state-space transformation, matri-
ces A(t), B(:) and C(3) take the form

o[ 2],

B
5o =[], e = tao o),

where the pair (A; (-}, B((-)) is stabilizable, the pair
{C(+), - Au(+)) is detectable, and A js a constant
and diagonalizable matrix and only of imaginary axis
eigenvalues. Furthermore, the solution P{ - ) takes,
with respect to the above transformation, the form
P,(:) O
P(1) = [ !5]’
where P;(-) is unique and
Au(s) - Bi(2) By (1) Py (s)

is a constant and asymptotically stable mattix, Py is a
constant matrix and there exist in fact uncountably many
such P;.
3 Conclusions

This paper extends the result of Richardson and
Kwong! 2! on positive definite solutions of algebraic Ric-
cati equations to periodic Riccati differential equations.
For the periodic Riccati differential equation a complete
necessary and sufficient condition is presented for the ex-
istence of Hermitian periodic positive definite solution.
Moreover, it is shown that when an HPPD sohition ex-
ists, it is either unique, or else there are vmcountably
many such solutions .
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