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Abstract; Being aimed at BOF (basic onygen fumace) process which is complicated, has many factors influencing the
endpoint, and is difficult to be measured confimously and accurately, the intelligent dynamic eadpoint control based on the sub-
lance information is proposed. The BOF endpoint temperature and carbon content are predicted by use of gray model and nevral
network compensation. On the basis of this, the RBF neural network is regarded us presetting model, and the oxygen and coolant
during the reblowing period are adjusted through fuzzy adjustment. A 180t cooverter is sitnulated. The resulis show that the
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1 Introduction

The endpoint contro! is an important operation in the
later period of BOF steelmaking. The so-called BOF
endpoint is the moment at which the molten steel tem-
of the progress of the BOF steelmaking technology, the
endpoint control is mainly to control the endpoint tem-
contro] will prolong the smelting time, reduce the lining
life, increase the metal consume and influence the steel
quality. BOF steelmaking is a very complicated, high
temperature and many phase physical-chemical process.
There are many factors to influence the endpoint, and
some factors are difficult to be described quantitatively.
Simultaneously, the temperatore is very high {more than
1600C), and the environment is abominable in the

smelting process. At present, there are many kinds of
continuous measuring method for various kinds of physi-
cal quantity,but the most are indirect measurement, and
can not achieve higher precision. As a result, it brings
enomous difficulty for the BOF endpoint control. At
present, more advanced control method is that the static
control is combined with the dynamic control based on
the sublance measuring information in the world!!~3].
The blown oxygen and the added auxiliary material to be
used to make slag are determined only based on raw ma-
terial condition and smelting target in the static model,
and any correction is not made in the middle stage,
therefore the endpoint hitting ratio is very low. Frequent-
ly, to hit the target needs many reblowings. On the ba-
sis of the stafic control, the dynamic control is to take
sublance measurement in the later period and adjust the

+ Foundarion item: supported by Chinese Mational Matral Science Key Fund (69674018 ) and Chinsse National “Nine-Five” Project (97 - 562 - 03— 02).

Received date: 2000 ~ 01 — 24; Revised dee- 2000 - 10 - 31.


http://www.cqvip.com

No.3 BOF Intelligent Dynamic Endpoint Control 347

endpoint based on the measured information, therefore
the dynamic control is an indispensable link in BOF
steelmaking. The accuracy of the dynamic model is di-
rectly related to the endpoint hitting ratic.

2 Endpoint control content

BOF steelmaking is an intenmittent production pro-
cess. Fixed interval exists between one heat and another
heat. It has great lag property, and is difficult to accu-
rately and timely measure controlled variables. This pro-
cess has complicated reacting mechanism and constantiy
changing characteristic with time. Therefore it has time-
varying nonlinear characteristic and complicated coupling
relationship among the variables. The control for this
kind of process is different from general process control.
In fact, it is a control problem of “optimization of set-
ting value” . The control includes two contents: 1) opti-
mal control of setting value being aimed at technology
index. The control model for the BOF process is directly
established taking aim at the control for technology in-
dex, and the optimal control is realized through continu-
ously comecting and perfecting the model; 2) optimal
control of setting value being aimed at economic index.
1tis a kind of higher level optima! control, that is, on
the basis of the former optimal control, the process
model is identified using the practical data obtained from
the process, then the most optima! solution on the eco-
pomic index is acquired making use of the most optimal
theory. At present, the method of the static control
combined with the dynamic control used in the BOF
steelmaking is practically the optimal control of seftting
value to meet the need of the technology index. It can
not realize the optimal control of setting value for the e-
conomic index .

To realize the optimal controt for the BOF steelmaking
endpoint, synthetical control strategy must be used so as
to realize recursive optimizatiom. It includes two as-
pects: 1) the control for one heat. On the basis of the
static control, the dynamic control is added based on the
information, measured by soblance to eliminate the prob-
lem that the static control model can not accurately deter-
mine the control quantity. It is practically open loop
control. 2) self-leaming control among heats. The BOF
steelmaling is a repeating productive process which is
very similar among one heat and other heats. Especially

the difference between two adjacent heats is less. So the
various relevant information obtained after completed the
smelting of one heat should be made full use of to modi-
fy the parameters in the static control model and the dy-
namic control model. The next heat is controlled taking
advantage of the modified models. It is an adaptive,
self-learning process, and embodies the idea of recursive
optimization .

Let the objective value of the endpoint temperature
and carbon content be T, and €, respectively. It is
shown as point A in Fig. 1. When BOF steclmaking
reaches to the endpoint, if the molten stegl temperaure
and carbon content enter into an area near point A (the
shadow area in Fig.1), the objective is hit. When the
main blowing stage ends off, the molten steel tempera-
ture T and carbon content C; are measured by soblance.
It is shown as point B in Fig. 1. So the dynamic end-
point control of the BOF steelmaking is practically to
transfer the molten steel state from point B to point A. In
the later period of BOF steelmaking, the molien steel
temperaiure and carbon content are moved according to a
definite phase locus. When the molten steel temperature
and carbon content measured by sublance are inside two
embrace lines, the objective would be hit by blown suit-
able amount of oxygen. If the molten steel temperature
and carbon content measured by sublance are not inside
two embrace lines, the objective would not be hit by
blown any oxygen. An effective method must be taken
to adjust point B into embrace lines. In general, a suit-
able amount of coolant or carbon powder is added in the
molten steel according to specific situation.

S
T \LB\

Carbon content

Cg Cr
The changing locus of the molten
steel temperature and carbon content

3 Dynamic endpoint comtrol
In the later period, the most part of impurity in the
moolten steel has removed. The reaction is much steady.

Fig. 1
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The slag composition, the raising temperature velocity
and the reducing carbon velocity of the molten steel ap-
pear regalar change. So the molten steel carbon content
and teaperature may be described by the following equa-
tionst4

C =Cg+ﬁh1{1+[exp(£f;€g)-

;
o Vo - Vor + Ebiwi
l]exp[-lp'?’a( . ()
T=Tf+rv°‘;f°‘+a- Sk, 2)
where

C,C;, Co ~ carbon comtent (10-?% ) when blown
oxygen is V,, carbon content (10-2%) when main
blowing stage ends off, carbon content (10°2%) at
blowing ultimate state;

Vo, Vor — the quantity {Nmr®) of blown oxygen at
any time and the end of the smelting;

5 - taking oxygen coefficient (m’/t) of ith
coolant;

W; — weight(t) of ith coolant added during the re-
blowing period;

W, — weight(t) of the molten steel;

a, 8 — constant;

Adaptive

/
prcs:u'?{ model -
;

Rectifying model |

L G

Judging rule

T, T: - molten steel temperature (T) when blown
oxygen is Vy and main blowing stage ends off;

¥ - raising temperature coefficient (C/nr’t);

& - raising temperature constant () ;

k; — cooling coefficient of ith coolant {TT/t) .

From equation (1), the needful oxygen from taking
the first sublance measurement to the endpoint may be
easily found
Cf-Cg

B8

LozLoy 1) - Tomi, (3)

1]/ exp( 3
where AVp -blown oxygen (Nm’); C.—the molten
steel carbon content (1072% ) at the endpoint.

The BOF dynamic endpoint control is made tiwough
reblowing oxygen and adding coolant by use of the in-
formaticn measured by sublance. According to the
smelting condition, sometime a small amount of auxil-
iary maicrial is added. It has litfle inflvence on the end-
point. Therefore the BOF dynamic endpoint contrel is a
two-input process, in which the inputs ate quantity of
the reblown oxygen and weight of the added coclant,
and the outputs are molten stecl temperature and carbon
content .

AVy =BV e [exp( 2150

Tg CE

Controller Converter

+

F Adaplive

. Ty [Cer
Predicfive model —
1 Tem | Cem

Fig. 2 BOF dynamic endpoint control system based on intelligent control

3.1 Predictive model

The endpoint predictive model for the BOF steelmak-
ing is established by use of gray model and neural net-
work compensation. The predictive maodel includes two,
i.e. the predictive models of the endpoint temperature
and carbon content.

Let the practical endpoint temperature or carbon con-
tent be x@(i)(i = 1,2,,n). The GM(1,1) model
of the endpoint temperature and carbon content may be
established acconding 1o the method 10 model gray sys-

tem’’. The endpoint temperature and carbon comtent
may be calculated by use of this model. In a sense, the
GM(1,1) model reflects an mfluence trend of the non-
quantitative factors on the endpoint, bt doesn' t com-
pletely reflect particular influencing effect on every in-
put. The extent which every input mfluence on the tem-
peramre and the carbon content is different, and the in-
fluencing mule is also different. On the other hand, amy
kind of modeling method based on statistical analysis is
not capable of perfectly comesponding with the practical
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value. The pray model is also without exception. It
must exist a certain amount of error. As a result, the
prediction by use of this model exists error. To raise the
predictive pmcisiop, the model must perfectly come-
spand with the practical value to the utmost. This may
be solved through modifying or compensating. In this
paper, the emor produced by the GM(1, 1) model is
compensated based on the information measured by sub-
lance during the steelmaking period by use of RBF neu-
ral network so as to raise the model precision.

According to gray modeling method'® , the GM{(1,1)
madel of the endpoint temperature and carbon content is
obtained as follows:

2 E 1) = (D) - e 2 (4)
a

a

The solution found according to the above equation is
not actual output value but progressive valve ( corre-
spending to the data calculated by use of accumulated
generating operation) . To obtain the actual value, these
data are restored. That is , inverse accumulated generat-
ing operation is made. The inverse accumulated generat-
ing operation is

{ £(n)(1) - £(1)(1)’ (5)
2O = 2Pk -2V - 1),
(k=2,3,,n,n+1,-).

After calculated the endpoint temperature or carbon
content in the light of the above equation, the difference
between the calculated value and the practical value may
be calculated according to the following equation:

Ax(i) = 2(i) - 2900, (i = 1,2,,n). (6)

The RBF neural networks of the endpoint temperatore
etror and the endpoint carbon content error are estab-
lished based on the information measured by sublance at
the end of the main blowing. From equation (1) and
(2), it is known that the endpoint temperature is related
to the temperature measared by sublance at the end of
the main blowing, an amount of the blown oxygen and
weight of the added anxiliary maltcrial during the reblow-
ing period, while the endpoint carbon content is relevant
to the carbon content measured by sublance at the end of
the main blowing, an amount of the blown oxygen and
weight of the added auxiliary material during the reblow-
ing period. Therefore the network input nodes are 7 cor-
responding to an amount of the blown oxygen x,

(Nm®), weight(t) of the added lime x, mixed material
x4, iron sheet x,, ore x5, dolomite x5 during the reblow-
ing period and the molten steel temperature z7 (C) or
carbon content 7 (1072% ) measured by sublance at the
end of the main blowing. The hidden nodes are deter-
mined through the training. The output node is 1 corre-
sponding to the temperature error AT or the carbon con-
tent error AC. The network is shown in Fig. 3.

AT or A

Fig 3 The neural network of the endpoint
temperature and carbon content

RBF neural network is not weights but a radial basis
function from the input layer to the hidden layer. There-
fore the network centres not only are directly related to
the mapping capability of the hidden nodes to the input
variables but also play a very important role in the whole
network property. The petwork centres must be rational-
ly determined so as to make the input variables be in an
important area. In this paper, the network centres are
determined by use of K-mean-accumulation algo-
ritwn!® . After the network centres are determined, the
network may be trained. The weights are adjusted by
means of recursive least square (RLS)method(” .

From the above GM(1,1) and RBF neural network
models, the future heat prediction for the BOF endpoint
temperaiure and carbon content are obtained .

£(k) = 29(k) + Ae(k), (7
where £ (k) is the calculated value (1 < k < n) and the
predictive value (k > n). 2% (k) is the value cakulat-
ed from GM(1,1) model. A2{ k) is the error obtained
from the neural network model.

3.2 Presetting model

The presetting model is used to determine the blown
oxgen which makes the endpoint carbon content enter the
goal area on condition that no coolant is added. It is a
RBF neural network. From equation(3), it is known
that an amount of the reblown oxygen is related to the
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molten steel carbon content at the end of the main blow-
ing, the goal endpoint carbon content, the added coolant
rial. The auxiliary material is added to make slag. In the
later period of the BOF steelmaking, making slag has
completed basically and the smelting process is more sta-
ble. The less auxiliary material is added in the reblowing
stage, the influence of it on the endpoint temperature
and carbon content is also less. Moreover this influence
has been considered in the predictive model. The variety
and the amount of adding auxiliary material are deter-
mined according to the slag condition. They are still de-
termined by use of general methods which are widely
used at present. As a result, the number of the neural
network input nodes are 3 inchiding the molten steel car-
bon C; at the end of the main blowing, the goal endpoint
carbon content C, and the coolant W, added in the re-
blowing stage. The numbers of the hidden nodes are de-
termined through the training. The output node is 1 cor-
responding to an amount of the reblown oxygen. The
network is shown in Fig. 4. Determining the network
centres and training the network are the same as the pre-
dictive model .

Fig. 4 The reblow oxygen neural network

3.3 Modifying model

The reblown oxygen is determined by use of the pre-
setting model on condition that no coolant is added . Hit-
The endpoint control also inclides the control for the
endpoint temperatere which is realized through adding
coolant. The coclant would take some oxygen to the
molten steel. Considering the oxygen, the reblown oxy-
gen calculated through the presetting model need to be
adjusted. As a result, the modifying model includes
two. One is to determine the coolant, and the other one
is to adjust the reblown oxygen. Blown oxygen may re-
duce the molten steel carbon content and raise the molten

steel temperatire. On the one hand, added coolant
would reduce the molten steel temperatire. On the other
hand, the oxygen taken by the coolant would influence
the molten steel temperature and carbon content. Cou-
pling exists between them. Through analyzing, it may
be found that the added coolant is less in general, the
oxygen taken by it is less compared with the reblown
oxygen. The reblown oxygen has influence on the
change of the carbon content. Effect of the modifying
model is to adjust the reblown oxygen which is not still
blown into the converter. As a result, the input of the
modifying model to determine the reblown oxygen is 1
corresponding to AC. The added coolant and the re-
blown oxygen have influence on the molten steel temper-
ature. Here, the coolant is adjusted after adjusted the
oxygen every time. So the input of the modifying model
to determine the added coolant is also 1 corresponding to
AT. Admstnent is made by use of fuzzy mles in the
modifying model of both the reblown oxygen and the
added coolant. For the convenience of modifying oontrol
variables, the T-S rulel®) is used in the fuzzy adjusting
rule.
IFeis A;, THEN k is u;,

where u; € U{i € I) is determinate fumctions or deter-
minate value but not fuzzy set.

From Fig.2, it is known that the inputs of the fuzzy
modifying model for the reblown oxygen and the added
coolant are AC = €, - Cpp,and AT = T, - T, respec-
tively. In general, the control range for the endpoint
carbon content is +5( x 1072% ), and the control range
for the endpoint temperature is + 15C. AC and AT are
divided into fuzzy subset as follows
AC = |{NVB,NB,NM, NS, ZE,PS,PM,PB,PVB| =

{-5, -4, -3, -2,0,2,3,4,5[,
AT = {NB,NM,NS,ZE,PS,PM,FB| =

{-15, - 10, - 5,0,5,10,15/.
The corresponding membership function is shown in Fig.
5 (a) and (b).

Let AT and AC membership function be zr and 2 re-
spectively, use product-sum inference method, and use
gravity centre method to defuzzy. AT and AC member-
ship function is triangular as shown in Fig.5. Two mles
are activated at each point, and sum of two membership
degree is 1, therefore the cutputs of the fuzzy modifying
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mode] of the reblown oxygen and the added coolant are
respectively

AVo = 25 pc(BCIAC,
{Wr = D ar(AT)AT,. ©
My

NB MM NSNE|l PS PM PB

AT
-i5 =10 =5 Q 5 10 15
(a)

He

NVB NB NM NS ZE |1 Ps PM PB PVYB

-5 -4-3-2-1 0 1 2 3 4 5
(b)
Fig. 5 A7 and AC membership function
An amount of the blown oxygen and the weight of the
added coolant have more definite relation with the
molten steel temperature and carbon content in BOF
steelmaking. The more oxygen is blown, the more the
carbon content is reduced. The more coolant is added,
the more the temperature is reduced. As a result, the
adjusting rule of the blown oxygen and the added coolant
may be easily obtained. They are shown in Table 1 and
2 respectively.
Table 1 Fuzzy adjusting rule of the blown oxygen
AC NVBNB NM NS ZE PS PM PB PVB
AV 20 10 5 2 0 -2 -5 -10-20

Table 2 Fuzzy adjusting rule of the added coolant

AT NB MM NS ZE PS PM FB
W, 0.1 005002 0 0 0 0

In Table 1, AV, unit is nomal cube meter (Nm®) . In
Table 2, W, unit is ton(t). They are all adjustment val-
ue per heat. To obtain adjustment value per ton, the ad-
justment value per heat needs to be divided by the
molten steel weight. When the temperature cakulated by
the predictive model is lower than the goal temperature,
the coolant should not be added. Moreover the blown
oxygen is calculated by use of the presetting model on

condition that no coolant is added. So when AT is posi-
tive, W, is O in table 2.
4 Simulating research

The practical data of 60 heats of a 180t converter in a
factory are simulated, in which the data of the former 35
heats are used for establishing the predictive model and
the presetting model, the other 25 heats are calculated.
The hidden nodes of the neural network to be used for
compensation are 12. The hidden nodes of the neural
network as the preset model are 7. Both the learming
rates are A = 0.995, Both the emor mls are
e = 0.001. In simulaton, firstly the predictive model
and presetting model are established taking advantage of
the sample data, Secondly the reblown oxygen is calcu-
lated hy the presetting model making use of the data
measured by sublance and the goal data on condition that
no coolant is added. Thirdly the endpoint temperature
and carbon content are cakulated through the predictive
mode] in the case of the above cirumstance. They are
compared with the goal endpoint temperature and carbon
content. The reblown oxygen and the added coolant are
adjusted by use of the modifying model. The adjusted
value is sent to the predictive model to caleulate the end-
point temperature and carbon content until the endpoint
temperature and carbon content are in the goal area
{(1ACI1 <3, 0C=AT = - 10T). At last, the re-
blown oxygen (Nm®)) and the added coolant(t) are de-
termined. The whole simulating process corresponds to
the practical steelmaking process. First, the predictive
data of the former 35 heats, The 36th heat is calculated .
Then the sample data of the 36th heat are added to the
modeling data, and the data of the first heat are simulta-
neously removed so as to hold unchangeable the mmnber
of data to be used for establishing model. The above
process is repeated until all 25 heats are calculated. The
reblown oxygen and the added coolant of the other 25
heats are calculated as shown in Fig.6 (a) and (b).
The corresponding endpoint temperature () and car-
bon content (1072% } are shown in Fig.7 {(a) and (b).
In the figures, "——" is the actual value “------ "is the
calculated value based on the model. From the figures,
it is known that the reblown oxygen and the added
coolant calcnlated are close o the practical value in most


http://www.cqvip.com

352 CONTROL THEORY AND APPLICATIONS

Vol. 18

heats. The mean-square emor between the calculated val-
ue and the actual value of the endpoint carbon content
{x 10729 )g, = 2.4032, while the mean-square error
between the calculated valoe and the actual value of the
endpoint temperaure ( T) o7 = 7.6226. It is shown that
the precision of this method is higher and it may be
completely used for the endpoint dynamic control in
practical BOF process.
1000
800
600
AN fonchoan -
200 f-----
o

oxygon /Nm?

i
08 ﬁ .
£ 06 . ra—
g 04 [" . I A
02 A } l ( H
0 \WHYN ERYAY,
i 5 i0 15 20 25
Sample number
(b
Fig. 6 The blown oxygen and the added coolant
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Fig. 7 The endpoint control temperature and carbon content

5 Conclusion
The control for the BOF endpoint is different from

general process control. It is practically an optimal set-
ting problem. In the intelligent dynamic endpoint con-
trol, the influence of the nonquantitative factors on the
endpoint is reflected by the GM(1,1) model, while the
influence of the quantitative factors on the endpoint is re-
flected by the compensation of a neural network. So the
model precision is raised. A neural network is regarded
as presetting model, and the reblown oxygen and the
added coolant are adjusted by use of fuzzy rules. In re-
sult, the shortcoming which any adjustment is not made
after determined the reblown oxygen and the added
coolant in the existing method is overcome. The end-
point hitting ratio is further raised.
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