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Abstract: The controller of global stabilization for multivariable nonlinear dynanrical systems which can be transformed
into the Bymes-Isidori nomal form is given using oaly state variables of the linear composite part. The concept of the: finite: time
sliding mode is introduced in which the advantage is that the linear dynamics tend to zero in finile time, The global stability is
guaranteed under the developed controller when the nonlinear systemn is minimum phase.
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1 Introduction

The asymptotic stabilization controller of minimum
phase nonlinear systems have been well swmdied via
smooth state feedback control!! ~%! . One major methodol-
ogy makes use of the ponlinear Bymes-Isidori normal
form derived by an appropriate diffeornorphism and a
state feedback transformation’® . Local stabilizability of
the Bymes-Isidori nommal form has been well understood
using the central manifold theory["s] . A counter-example
has shown that the global stabilization cannot be guaran-
teed if the control only keeps the linear composite dy-
namics exponentially stable!>?] | To address this prob-
lem, extensive research has been focused on exploring

special properties of the linear part of the system, e.g.,
the passivity properties or the positive real condi-
tion>1%"] [3] has investigated some special forms for
both the nonlinear subsystem and the linear composite
system.

In this paper, we deal with the global stabilization
problem using the terminal sliding mode ( TSM) con-
cept!™]. Because the asymptotic stability makes the state
of linear part never reach the equilibrium exactly, the
small value of the state during the transient process prob-
ably results in the peaking phenomenon for sorme nonlin-
ear system. The use of TSM is to force the state to reach
the equilibrium in a finite time so that the asymptotic ef-
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fect of the asymptotic stability on the nonlinear system is
removed and hence the peaking phenomenon is avoided.
The advantage of the proposed control is that it is inde-
pendent of the nonlinear part of the system, and cnly the
states of the linear composite dynamics are needed.
2 System description

Consider the following nonlinear system with partially
linear composite subsystem[g’“]
{x = flz,8,1),x ER*, 6 € R o
é = Af + Bu,u € R",
where f(x,&,t) is a smooth vector function, and A and
B are constant matrices. In order to obtain the smooth
linear feedback controller to globally stabilize system
(1), some special forms are discussed!>*) . For system
(1}, the following assumption is made.

H,: f(0,0,t) = O for all z. The origin of the zero

dynamics

£ = f(x.0,1) (2)
is globally asymptotically stable .

Hy: the pair (A, B) is controllable.

The control task is to find a control u(¢) such that
system (1) is asymptotically stable given the assump-
tions H, and H;. In order to achieve this goal. two im-
portant methods for the design of controller were consid-
ered . One is that only using the linear composite dynam-
ics £ to design the linear feedback controller to guarantee
the dynamics £(¢) is exponentially stable so that its ac-
tion to the nontinear dynamics x(¢) reduces to zero ex-
ponentially. This sometimes results in the peaking phe-
nomenon'?), The second method is to use all system
states z and £ to design a smooth nonlinear feedback
comtroller. In this sense some existing research works re-
quire that there exists a known Lyapunov function for the
zero dynamics (2). The both aforementioned methods
require that function f( + ) must satisfy a particular condi-
tion for global stability or semiglobal stability!'? 1,

In order to illustrate the finite time convergence and
TSM of the nonlinear system, let us consider a first or-
der dynamics

a'::-—ax-ﬁtq/". {3}
We can solve the differential equation (3) analytically.
Let z = "7 and substitute this into (3) leads to
pzP'z = — azf — @7,

Its solution is

P; (a4 B) = cexp(- a(p - ¢)t/p).
(4)
For = (0) =0, we have

¢ = P; L a(x(0)-9% 4 B)).

The time to reach zem, ¢ , is

¢ = —2—(In(ep) - n(B(p - g})). (3)
alp - ¢)

Substituting ¢ into (5) gives
? =—L—(in(p - Q)a(x(0)*" 7 +
alp - ¢q)
81y - In(B(p - g1)). (6)
It should be interesting to see that simply increasing
the constant ¢ may result in longer reaching time. There
must be a balance of selection of the parameters p, g,
a,f . However, ifa = 0 ,from (5), large A makes the
reaching time ¢ very small. To extend the scalar case to
MIMO systems, we introduce the following TSM vector
s = CifL+ 06 + CE(E6) %R,  (7)
where s € R™,py > dqg, and €}, €;, Cyare constants
mx ({-m),mx m,m x (I -~ m) matrices, respec-
tively. The constant matrices C,, C,, Cy are to be de-
signed appropriately according to the canorical form of
MIMO systems to be adopted. Now let us look at the
term &;(€]€,)"%"Poin (7). It meets
& (eTen -l = | €18, || tro-2etn,
which means the powers of the entries of £ is positive
and less than one if p; — 2¢ > 0. This means that in
(7) as || & || is sufficienty small, s does not escape to
infinite and s is smooth in £. This property will be used
in the following section.
3 TSM control design for global stabilization
Without loss of geperality, assume that the linear
composite part of the nonlinear system (1) is in the fol-
lowing form.
£ = Ané + Apb, (8}
€ = Ané1 + Ané + Byu, (9)
where &, € R-™, &, € R™ are system states, Ay, Ay,
Ay, Ap . Brare (I —m)x (I -m),(I-m}xm,m

x (I - m},m x m,m x m matrices, respectively, the

pair (Ay, Ajy) is controllable, and B, is nonsingular.
We now present the first result on global stabilization.
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Theorem 1  For the dynamical system (9), If the
control law is designed as
u=- (Csz)-lz[Cl + Cy(eTe) o' —

z.ﬁicﬁl(ﬂﬁ)'l'(%f"") ETN(Ang + Apy) +

Co(Ané + An&y) + s + Ks(sTs) WP},

(10)
where K is a positive constant, then the switching mani-
fold s defined in (7) will be reached in finite time and
remains af zero forever.

Proof Choose the Lyapunov function

V= %sTs,
The time derivative of V along the systemn dynamics (9)
and (7) is
V=T =

sTLC18) + Cofy + Co{ETE) %P -
2ﬁc;&(ETEJ‘I‘(V%)ET&] =
sT[Cy + C5(8781)" %" -
zﬁicaacs’fs.)-l-‘%’ﬁu’ 11 Ant +

Apés) + sTC(Ané: + Angy) + T CyByu.
(11)
Substituting (10) into (11) yields
V=~ sTs - K(s%s)(sTs) %P =
-2V = 2 nV e gyie-w)n,  (12)

Acconding to the analysis given in the above section,
V() reaches zero in finite ime and the finite time ¢ is
able to be determmed by the parameters K, pg. gg, and
the initial value of V(0) which is calculated by s(0) or
£,(0) and &(0) . (12) implies that once the trajectory
et} = (&(1),8(t)) reaches surfaces s = 0,it re-
mains in s = (.

‘We now look at how to choose the constant matrices
C1.C3,C3 so that the finite time reachability is
achieved. We have the following theorem .

Theorem 2 Define L, and L, as

Ly = (A - ApC5'Cy) Ly = ApCi'Ca.
If the following conditions hold:
1) The matrices €, and C; are chosen such that
Reld( Ly + L)} < 05 (13)
2) And the matrices C; and €4 are chosen such that

RefA(L, + LD} > 0, (14)
where A( - ) represents the eigenvalues, then the equilib-
rium &, = 0 is globally stable and can be reached in fi-
nite tme.

Proof Consider the Lyapunov function
V=%ET$1-

Differentiating it along the dynamics (8) leads to
V= g4 =
E1CL + LD & - E1(L] + L) 61 (&18) %P <
- minf| ACL] + L;) (€78 -
minfl ALY + L) |1 676,(8T8,) %7 <
- 2minf{ ACLT + E) 1}V -
2~0p=9)Pumin] | ACLT + L,) || Vo~ %}po,

(15)
if the conditions (13) and (14) hold. Then using the
same analysis as Theorem 1, V(1) as well as the equi-
libtrivm £, is globally stable and can reach zero in finite
time. And since V < Ofor &, < 0, ¥(¢) and & (¢) will
remain zero forever once they reach zero.

Corollary 1 If the matrices C,, C;, €5 are chosen
such that
An - ApCi'Cy = - Diaglm, - am)s (7, > 0),

(16)
ApC:'Cy = — Diag{pr, "2 pu-m) - {pi > 0),  (17)
then the equilibrium £ = Q15 globally stable and each
entity of & can reach in a fixed time specified as

i) =J?i(—P';—)[ln((p - O Upl&0) 7

3)) - In{pi{p - g ]. (18)

Proof The proof directly follows from the proof of
Theorem 2 and Section 2.

There is a problem with ( £7&,)~ %7, For example,
as€; — 0, a singularity may occur in controller (10)
which means p — o |

Theorem 3 If

po—4q > 0, (19}
then when the dynamics &,(¢) and £,(¢) reach zero on
the surface s = 0 , the control » defined by (10) will be
bounded forever.

Proof Becanse of controller (10), the terms that
would cause the singularity are
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Sy = (€16 %P x Apé,, {20)
and the temm
Sy = &{&8) % x Ank. (2D)
When the trajectory moves on the surface s = 0, it
meets
g = Ci'C& - G316 (& &)W (22)
Substituting (22) into the above second temn, we have
I S: 0 = & (e78) -2e] x [- €' i -
C1'Ca&(&]8) 0] || <
Mg hi2% 4 N L& || 49,
(23)
where M, N are positive constant numbers. According to
the condition py — 4q9 > 0 given in the theorem, 5 is
bounded. The same arpument can be used to prove §;
bounded. Then we know when & —0 , the terms 5, and
S, tend to zero, the singularity is avoided.

Theorem 3 puarantees that as the trajectories &,{:z)
and £,( ¢) reach the switching surface s = 0 and move a-
long this surface, the control law u(¢) is bounded . If the
initial state is not on the surface s = 0 , it is possible that
some of components of & (¢) and £,(¢) first reach zero
before they reach surface s = 0 . Under this situation,
the control law x{¢) is infinite. For example, let{; =
0,£; = 0,u(¢) is unbounded becanse (£7¢;) %" is
infinite if £, = 0 . To overcome this singularity, the two
phase control strategy is proposed to deal with the singu-
lasity situation!”?! ., Define the controllability grammian as

G.(0,1) & J.:exp{- Ar) BBTexp( - A"z)dz,

(24)
where A, B are state coefficient matrix and input vector
matrix of the linear system (8) and (9), respectively.
G.{0, t;) is nonsingular for all ¢, > 0 . The solution of
(8) and (9) is

£(1) = exp(Az)£(0) + I;mpﬂ(t - ) Bu(z)dz,

(25)
In the interval {0, ¢/], the control input
u(t) = BTexp{ — ATt) 6;(0, ¢ ) exp{Asy) £(2,) - £(0)]
(26)
can transfer any initial state £(0) to any preset final state
£(t;) .Substitating (26) into (25) we obtain now the
final state £(z/) is selected on the surface s = 0 which

means it satisfies

Ci &1+ Cotal ) + Co&i(e)(E](2)8(2,)) %" = 0.
(27)

Combining control (26) with the TSM control (10), we

will obtain a nonsingular control strategy stated as fol-

lows:

1) Define properly the parameters C,, C;, C3, K, and
let gy, pp satisfy the condition in Theorem 3.

2) Define switching function s and in the surface s =
0, choose an arbitrary point £y .

3) For (8),(9) and £(Q), first choose a proper time
ty such that the state § = £(z,) is reached by using con-
trol (26) .

4) Once £(t;) = & is reached, the control is imme-
diately switched to the TSM control law (10) . Since &
€ {&:5 = O} Theorem 1 guarantees that £(¢) will be
confined on this surface forever. Upon the action of the
TSM control law (10), £(t) reaches zero in finite time
along the surface s = O.

Now for the original nonlinear system {1), we have
the following results:

Theorem 4 For system (1), if for any input £{:)
which satisfiesé(z)72(z) <1 y(z) | where y(t) is cer-
tain solution of system

7 =-ay - B, (28)
where ¢ > D and 8 > D are certain positive constants and
q and p are positive odd constants ( ¢ < p and2q - p
> ), the sclution x(t) of the nonlinear dynamical
system

2 = f(x,8,1),
with arbitrary initial value can be extended to [0, =),
which means x{¢) cannot escape to infinite in finite
time, the conditions of Theorem 2 and Theorem 3 hold,
and the controllers are chosen in {10) and (26), then
system (1) is globally asymptotically stable.

Proof For any given initial state { x4, £5) , (26) only
acts in time interval [0, ¢;] and the time t; can be chosen
arbitrarily . We can always select a small ty.2, /3, and p
and ¢ such that in [0, zf] , the solution £{¢) with initial
£ {0) meets £7(¢)&(¢) <! y(¢) | . Therefore, x(z)
and £{z) with initial x(0) and £(0) are bounded in time
interval [0, t;] . Once the controller is switched to the
TSM control (10), the trajectory {x(:),£(z)) will
move along the surface s = 0 and £(¢) reaches zero in
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finite time. As aforementioned in Theorem 2 and Theo-
rem 3, [ £(¢) [|? = Vand V mests

V-2V - 2P %)p K/ P00
According to the condition of this theorem, the solution
x{ ¢} can be extended to interval [0, « ), that is, the
following equation

() = flx(e), 8(2),0)

is defined in the interval [0, o ). After a finite time
4 » TSM control law drives £(t) to zero, then z(1)
meets

2(e) = fx(8),0,t),6 > b+ ¥
Assumption H, guarantees that x( ) then tends to zero.

Corollary 2  If for any input £{¢) which belongs to

the set

Q= {Me™:N>0,M > 0},
the solution of the first equation of system (1) can be
extended to interval [0, ® )}, and other conditions re-
quired in Theorem 4 hold, then TSM controller{ 10) to-
gether with (26) globally asymptotically stabilizes sys-
tem (1).

Theorem §  For sysiem{1), if the assumptions H,;
and H; are satisfied and the conditions of Theorem 2 and
Theorem 3 hold, then for any fixed constants R, we can
always use controller(26) and TSM controller {10) with
appropriate parameiers setting such that for any initial
valile £(0) and x(0) which meet || x(0) | < R and
| 6¢0) || < R, the tmjectory x(:) tends to zero
asymptotically and £( ¢) reaches zero in finite time.

Proof Define M as

M = maxt | f(=,6,0) 1 : |l <2R,
I ¢l <2r,:€[0,R]I.
Since f(x,£,¢) is a continuous function inx,£,2, M is
a finite constant. From the first equation of (1), we
have

w(0) = 2(0) + [ fa(2),6(x), e (29)
Further, when ¢ is very smali it can be obtained that

=) 1l <
| =@ I + [ I f(=e) 8}, ) I dr <
R+ M:. (30)

In addition, £(:) is solved as
£(t) =exp(At)£(0) + exp(At)G.(0,2) +
G210, 1) exp Aep) £(ss) - £(0) 1.
(31)

It can be scen that as ¢ as well as || £(s) || is very
small and ¢ < &,£(t) < 2R .If let

t € [0,min] s, R/MI],
then we obtain from (30)

lx(t)| <R+ R =2R.
This implies that in ¢ € [0,R/M] , (30) is still valid
which means in this time interval x( ) is bounded.

In (26), we choose t = R/(2M) , and let £(z;)
meet || £(z) | < 1and s(£(z)) = 0. Acconding to
the definition of the TSM control and Theorem 2, the
terminal sliding mode time £ on surface s = 0 should

satisfy
Y=
Po —_qo {p.—q.}
V ¢ Po— 9" 'P
ﬁqoz{pﬂ_q"}wﬂmin“ A(LE + 14) ” (f]| LR S
Fo — 9o (32)

Bgo™ P~ Pumin{ | A(LT + Ly) 1}
If we choose f properly large such that ¥ < R/(2M) ,
then after ¢t > R/M , £(t) is zero.Consequently, after
t > R/M, x(t) meets

(1) = f(x(),0,¢).
This implies that x(:) will tend to zero asymptotically
since assumption H; holds.

Theorem 6 For system (1), if there exists a con-
stant 7 such that in the interval (0, T] , for any bound-
ed input £( ) the solution x{:) of the nonlinear dynam-
ics

2 = fx,8(8),¢) (33)
with arbitrary initial value can not escape to infinite,
then the dynamical system (1) can be globally asymptot-
ically stabilised by (26) and TSM controller { 10} .

Proof Let# = 7T/2, and choose || £(4) | < 1
which meets s(£(f)) = 0. From the definition of
(26}, £(t) with any initial value is bounded in time in-
terval [0, ¢} . And according to the condition given in
this theorem, in time interval [0, 7] z(¢) can ot escape
to infinite. In addition, in time instant t7, (2} is con-
trolled to £( ), and then will move on surface s = 0 .
As long as we properly design the parameters of the
TSM control law (10}, the sliding time ' can be made
to less than 7/2 since £(z;) is confined into a known
bounded region. That is ' < T/2 .Aftert > T, £(¢)
becomes zero and will not act on the dynamic system
(33) so that (33) becomes
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2= flx,0,t), t > T.

Hence, x(¢) will tend to zero since Assumption H,
hold.
4 Conclusion

The globat stabitization of nonlinear systems with par-
tially linear corpposite dynamics has been discussed in
this paper using the terminal sliding modes. The pro-
posed control strategy enables the equilibrium of the lin-
ear subsystems to be reached in finite time, resulting in
the effect of asymptotic convergence on the noolinear
system being removed. Under some light conditions for
nonlinear function /(<) , the globally asymptotic stabi-
lization is realized and the assumption of weak minimum
phase for the linear composite system is not needed as
long as the system dynamics firstly is suppressed into an
arbitrary bounded region by an appropriate control. The
results achieved have also shown that the TSM coantroller
which globally asymptotically stabilise systern (1) is not
related to the nonlinear dynamics x . The resulting con-
trol is not chattering .
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