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Abstruct; Robust adaptive control for a class of uncertain time-delay systems is presented in this paper. First, the robust
contnpl law is derived based on Lyapnuov stability theory, linear matrix inequality and variable structre control. Then, the
adaptive control law is obtained with the estimation for the upper norms of matched uncertaintes. The obtained results are ilhos-
trated by a menerical example.
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1 Introduction

Many researchers have done a lot of works on the top-
ic of the robust control for the matching uncertainties
based on variable structure control (VSCY''~), On the
other hand, for uncertain systems with the mismatching
uncertainties, the property of the variable structure sys-
tem, which is not sensitive to uncertainties, is not satis-
fied**) such that using ordinary variable control method
can not sclve these uncertain systems. Although lipear
matrix inequality (ILMI) is an effective method for the
robust control for uncertain systems with structured un-
cmaindm[5], the obtained controller i1s very conserva-
tive. If the uncertainties are divided into two indepen-
dent parts named the matching part and the mismatching
part, the corresponding control action should be designed
for the matching part, and the robust control method
should be used to overcome the affection of the mis-

matching uncertainties based on LMI. Meanwhile, the
control effactiveness may be widely improved based on
the fact that the various effective control strategies are
taken for various uncertainties with different property.

A robust controller is proposed in [7] based on VSC
method and LMI approach, but the controller is very
complex to guarantee the existence of sliding-mode. On
the other hand, varable structure control system need
not have sliding-mode only if the obtained closed-loop
systemn is stable. Thus, it is very easy to combine the
idea of VSC with LMI approach in the design of the ro-
bust control system.

With the development of variable structure control
theory and tirne-delay theory, there are many works in
the time-delay systems based on VSC method. In (8],
a V8C controller is proposed for a class of linear time-
delay systems with perfect model, and in [9] for a class
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of linear time-delay systems with matching uncertainties.

In our paper, for a class of uncertain linear time-delay
systems with the matching and the mismatching uncer-
tainties, a robust control is developed by using Lya-
punov stability theory, and by combining VSC method
and LMI approach. For the mismatching uncertainties
with known structure, the robust controller is derved
based on LMI approach without considering matching
uncertainies. For the matching uncertainties, an addi-
tional control term with relay-type is constructed based
on the idea of VSC method. The obtained controller has
the ability to overcome the action of the matching and
the mismatching uncertainties. To improve the effective-
ness of the developed conuoller, the adaptive controller
is deduced by the estimation for the upper noms of un-
certainties such that obtained closed-loop system is uni-
formly ultimately bounded. Furthermore, the controller
is modified with an approximate variable structore con-
trol algorithin.
2 Problem formulation and assumption

Consider the uncertain linear system with time-delay
as follows,
2(t) =
Apx (el + M8 (x(ed )+ Aaa(e—c ()} +
MaSp(z(e—r(ed )+ B(u + Flx,t(e—c(2)), 1)},

(1)

where x(¢) € %" is the state varable, ¢ & E™ is the
control input, n = m = l. The functions &;{x(z)),
8,(z(s — 7(1)) are uncertainties under the known
structore M), M, respectively. The function F(x(¢),
2(t - v(¢)),t) is matching uncertainty under the con-
trol input. Function of time = { ¢} is time-delay in system
state, and there is a positive constant ¢ such that 1 -
#(t) = o°. Matrices A, B, M;, M, are constant ones
with proper dimensions. The following assumptions are
introduced for system (1):

Assumption 1 For the structured uncertainty in
system (1), there are constant matrices Ny, /¥y such that

l 8 (x(t}) | = | Nyx(e) I,
I8l — 2 (eIl < | NpxCe = cCe) I,
(2)

respectively.

Assumption 2 For the matching uncertainty in

system (1), there are positive constants ¢g,c1.¢; and a
known function matrix Fol{x(¢},x(t — z),t) such that
(I (o), ale-tlehe)-Folx(t),x(e-7(e)), M <
co+ erllxCedll + eall wCe — (). (3)

Our aim may be described as follows:

Under the assumptions of 1 and 2, derive a robust
quadratic stability controller if the parameters ¢, ¢; and
¢7 are known previously; derive a robust controller with
the property of the uniformly ultimate bound for the ob-
tained closed-loop system if the paramneters ¢g, ¢; and ¢,
are unkonwn.

3 Robust controller for the systems with
matching uncertainties and its known-
norm-bound

Theory 1
with assumptions 1 and 2

#0t) sAx( )+ Ax (- () + M8 (2 (e )) 4

M.8,(x(e - z(1))) + Bu. (4)

Introduce a set {2 with the positive-defined matrices P =

P'>0,¢= 0" R =R">0, the positive ¢; > 0,¢;

> 0,23 > 0and the matrix X;
(P,Q,e1.65,285, K. R):

P(A; + BK) + (A; + BK)'P +

For uncertain liner time-delay system

o PMLMIP + eoNIN, +
{1
£z
0+ R <0,
Le, NNy + €3], - 0°R < 0.
Assume that the set 2 is non-empty, then the obtained
closed-loop system under the controller u = Kz(t) is
quadraiic stable for any elements in the set £2.

Proof

V= 2T Pele) + |

PHMIP + - PAATP + (5)

Choose Lyapunov function as follows:

:'rmxT(p)Rx(p)dp.
Under the controller & = Kx{:), we have

V<

2" P{Ay + BK) + (A + BK)TP|x(¢) +

25T PM 31 (2( ) + 22T(e)PMy85(x (e - o(2))) +
2 Re(e) - a®xT(e - t(e)IRe(e - T(2)) +

26 PAyx(t - 1(1)).

Congsider the following facts,
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2cT(e) PM 81 (2 (1)) <

Eile{t)PM.M}'Px(z) ralsilsN N <

E—lleu)PMlM%‘Px(:) + 2T () NN 2 (1),
2 () PM3, 2 (e - (1)) <

éxT(E)PMzMng(E)Hz I 8xz(t-2)) I 2

A O PMEP(1 )+ (1= ) MM (s (1))
2::T(£)Pligx(£ ~rlth) <
éxT(t)PAzA-{PxU)+£3xT(t—r{t))x(t—r(E)}.

Thus,
P{A, + BK) + {A, + BK)™P

N EiPMIMTP + NN, &
1

stT(t) x(1) +

LPMMIP + 5PAATP + R

%7t — c(tesNIN, + 30, - o°R|2(t — ={i)).
Because P, K, ey,£3,81, , R belong to the set £2, we
have, -

V- 2(e)0x(t) s - Amal Q) z(e) 12
So, the obtained closed-loop system under the controller
u = Kx(t} is quadratic stable for any elements in the
set 2. Then Theory 1 is proved.

Theory 2 For the uncertain system (1) with as-
sumptions 1,2, and the set {2 being non-empty , introduce
the element in the set 2, P, K, €1, 5,63, Q. R, then the
following VSC controller is appiied to system (1),

u = Kx(t)-Fola(s),x(e—v(2)), 1) —(egrer [ x(a) | 4

call x(e — () || Jsgn(BTPx(1)). (6)
Then, the closed-loop systems (1) and (6) are quadrat-
ic stable,

Proof Choose Lyapunov fimction,

V=S 0P) + [ TG Re(p)ep.
Under controller (6), we may have
Vgl @ M =(e) 12+
22T (tYPB{F{x(t),x{t - z()),t) -
Folx(e),x(e—c(e}}, ) -

2eg+ el z(e) N + el = ze 1),

x7(t)PBsgn{ BTPx{t}) <

A I 2 112 42(cprer T s{e) | +
el ale—z(ed) )1 PBET(2} |l -

2eo+ et x(e) 1 + eall wle=<{e)) 1),
x"(¢t)PRBsgn(R" P« (1)} =

- Aun Q) () 112

Thus, the closed-loop systems (1) and (6) are quadratic

stable .

4 Robust controller for uncertain systems
with the estimation for the bound-
norms of uncertainties

When the patameters ¢p, ¢ and ¢, are unkmown, the
gains of relay-type terms in the controller may be too big
or too small. In the case of too big parameters, the ef-
fect of the controller may be blow. On the other hand,
the robustness of the control system may be decreased in
the case of too small parameters. Thus, some VSC con-
trollers with the estimations of the parameters for the up-
per nomns of the uncertainties are proposed in [ 10,11].
By applying the results in [10,11], the following result
is obtained for the system (1) .

Theory 3 For the linear uncertain time-delay system
{1) under assumptions 1,2, the parameters ¢y, £, , ¢, be-
ing unknown, and the set {2 being non-empty, introduce
the element in the set 2: P,K,ep,62.84,Q, R, and
use the VSC controller,

M =

Ke(i) — Folae),x(e — z()),1) -

(corey 1 x(e) N 462 M (e —2(e)) | Dsgn( BT Px(s)),

(7
where éq,61.¢3 are the estimations of ¢g, ¢,, ¢, Tespectively,

€= gol- gofo + Il BTPx(0) 1| ),
él = 91(— 16 + ” BTPx(‘) " "IZ{I) “)r

&= gl- oty + 1 BRI e = ()} 1),
(8)
where go, 1. 925 Po. 91, @2 are any positive value ( >
0) . Then the closed-loop systems (1),{7} and {8) are
nniformly ultimately function,
Vo= x"Px o+ g5 (60 - co)? + g7 e - 1} 4
gi'(€2 - 2)? +J

!
-7

(‘)xT(P)Rx(p)dp.
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Under controller (7), we have,
V<
~Amn{ Q) | () |2 +
2T () PB(F(x(), x{t - z(&)).e) -
Fola(e), alo—c(2)),e))=2(éo+&r || x(2) || +
G ll xCe — (D) 1 )x™(2) PBsgn{ BT Px(2)) +
25" (Co-co)o+2qi (€1-c1 )6 +2¢T (62— 0106 <
~ Al @) I ale) 2 = 200 + &y [l x () | +
Eall x{e = (NI BTPe(e) || +
Acorey | 2(e) | +ex I 2Ce—c(eN 1) | BTPule) || +

245" (6o- codbo+2q7 ' (61— 01 )61+ 2gT (61— 02 ).
Applying the estimation &g, &,8s for cq,cy. 63, 1. €.
(8), we have

V- A Q) - 2¢0(8g — o) -
21081 — e1)éy — 22(8) - ¢3) 8.
Considering the facts,

- 2{éq - colfo - (&g - co)z + o8,

—2é - e)é - (e - ) + o,

—2(éy - c2)bs - (63— €2)% + 3.

We have
V - Amin @) = pol 80— co)?- g (61— ¢1 -
g2z — c2)* + pock + it + gred <
- min{Ai{ Q) o) Y+ A,
where

YT = («T, 60 - coréy - €1.87 — €2),

A = poef + q:]cf + @acs.
Based on the fact A > 0 and considering the definition
and judgement of uniformly ultimate bound in [12,13],
the closed-loop systems (1), {(7) and (8) are uniformly
ultimately bouned. This theory is proved.

5 Improved Algorithm
The sign functions in controllers {7) and (8) are the

sources of chatting in the controller signals, thus the ap-
proximate VSC algorithm'") is used in our study. The
improved controller algorithm may be described as fol-
lows:
Let

B Px(t) = [ 5 sm]T,§ > 0,

w= Ke(e) = Fola{e),«{t — <(e)),2) -

ooldo + & Il =() | + &l =(e -

z(£)) [ Jeh( BTPx (1)), (9)
o = qol - oo + poBTPx{t)ch{BTPx(1)),
&= ql-pi1+pp |l x(2) | BTPx(¢)ch(BTPx(2)),

(10)

1 = g2 - g2tz + poll z(t -

z{2)) | BTPx{¢)ch{ BTPx(¢)),
where

T 1 - exp({— us;)
1+ expf - pus;)

. ISl < ¢,
ch(S) = } 1 - exp(- u__s,,,)
1+ exp( - psp,)

1
—_— S ’
00

tsl < ¢

The uniformly ultimate bound of the closed loop sys-
tems (1), (9) and (10) may be proved in the similar
way of the proof for the Theory 3.

Remark 1

—(o+e Il () | 465 1| (e—c (&) || Jsgn{ BTPx{2))
and

— ol Eo+6y [ zCe) Il +é |l x{e = () | Yeh{ BT Px{¢))
are called the VSC adaptive term fo (7) and (9), re-
spectively. The controller

Uome = Ka(1) = Fola(e),x(e - (), 0)
is called the controller without VSC for {7) and {9).
6 Calculation Examples
Consider system (1) with the following matrices:
-2 B 0 0.5 1.5 0
Ay ={-—2 -8 2},;12 :{ 0 05 -1.5},
2

-2 -8 -1 0 0

I

100 100
m:o.l[o 1 0},N,=0.1li0 1 0],

0 01 001
Flx(e),z(z - c(&)),2) =
- Ssint + 0.2x,(z) + 0.62,(¢ - ),
o(t) = 3(s).
Let

M]=M2=
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Yol. 13

Fola(ed,2(e-t(2)},2)=0,0=0.50,R=1,,
By solving LMI (5), we have,
0.6229 0.7996 0.3720
0.7996 2. 3286 0.6065],
0.3720 0.6065 0.7718
€1 = 2.5133, &, = 2.4998, &, = 0.7741

P

i}

K=[-1.1950 -4.2404 - 3.0914],
s = [0.3720 0.6065 0.7718]x.
Furthermore, let

dqo = 0.5, q = 00025, dqa = 0.0025,
?0:1,@1:?02:21
the robust adaptive controller should be
u=Re(t)-(Eo+€ | x(e) 1 +6 || x(e—c{2)) || Dsgnls).

Ié“£}~'- qol - @ofp + s,
¢ = qil- e+ sl =)l ),
¢ = qal- @2ty + sl 2o - <.

In the case of the existence of the disturbance,

D(x) = diag(0.1,0.1,0. Dz (e)+[0.1 -0.2 0.1]".

1y
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Fig.1 Simulation results

Fig.1 (a) ~ (f) show the simulation results for the
controllers without VSC and with the adaptive terms, re-
spectively. It shows that the control performance is im-
proved greatly by applying the adaptive tem in the con-
troller.

7 Conclusion

By applying LMI approach, VSC method and adap-
tive control theory, a robust controller, a VSC robust
controller and a Tobust VSC adaptive controller are pro-
posed for a class of lincar uncertain time-delay systems.
The feasible and the effectiveness of our results are
demonstrated by a calculation examnple and its simula-
tion. Our main conclusions are as follows:

1) The destgned VSC controller need not satisfy the
matching condition of the ordinary VSC controller by us-
ing VSC method and LMI approach, this controller can
climinate the actions of the mismatching uncertainties
and the matching ones.

2) By applying adaptive control and the estimation for
the parameters of the upper nomms of the uncertainties,
the effect of the controller should be improved.
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tions .

The stability issue of DDP-PTD is an important topic
for further investigation. Future work should first intro-
duce appropriate notion of (A, B )-controllability sub-
space, then apply it to the disturbance decoupling prob-
lem with stability for system (1).
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