L BEE- ¥
2001 %6 A

3 10 S
CONTROL THEORY AND AFPLICATIONS

Vol.18,No.3
Jan, 2001

Article TD: 1000 - B152(2001)03 - 0431 - 05

Performance Analysis of Least Mean Square Algorithm
for Time-Varying Systems *

DING Feng, YANG Jiaben and DING Tao
( Department of Automation, Tsinglwa Umversity - Beijing, 100084, P, R China)

Abstract: By means of stochastic process theory, the bounded convergence of least mean square algorithm (LMS) is
studied without data stationary assumption and ergodicity condition. The upper bound of the estimation emor is given, and the
way of choosing the convergence factor of stepsize is stated so that the upper bound of the parameter estimation error is mini-
mized. The convergence analyses indicate that i) for deterministic time invariant systems, [MS algorithm is comvergent expo-
nentially, i} for deterministic time-varying systemns, the estimation error upper bound is minimal as the stepsize goes to umity,
and iii) for Gme-varying ¢t time invariant stochastic systems, the estimation error is unifoomly bounded.
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1 Introduction

LMS algerithm is very important in the area of adap-
tive signal processing and identification, and its conver-
gence has been paid more attentions. Many papers and
publications studied the general convergence of the pa-
rameter estimation error (PEE) given by the LMS algo-
tithm cnly from pure mathematics theory, and the con-
vergence conditions are very strong, for example the da-
ta stationary, ergodicity condition, M-mixed conditions
and 50 on, and any of them can not hold for any physi-
cal system. Ref.[1 ~ 4] show that the mean squares

PEE, Error, satisfies
2

lim Error = o(ﬁa%+%), (1)

that is, there exists constant 4 < < such that

'y;;gExmr,.gA(mh%}, (2)
where® < u < 2is a convergence factor, o2 and o2 are
the variances of the observation nvise and parameter
change rate.

Since A is unknown, the general convergence has lit-
tle significance in engineering. Therefore, Ding Feng!®}
has presented the bounded convergence, and the bound-
ed covergence emphasizes the studies and estimation of
the PEE upper bound so that the PEE upper bound is re-
duced.

The convergence analysis of identification algorithuns
is one of the most difficult projects in the area of con-
troll 18!, In this paper the bounded convergence of the
LMS algorithm is shadied using stochastic prooess theory .
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The analysis indicates that like forgetting factor least
squares (FFLS), the LMS algorithm can track time-
varying pararmeters, but it has less computation. For the
FFLS algorithm, as the forgetting factor approaches uni-
ty, the bounds of the covariance matrix and the pararpe-
fer estimation ermor grow without limits even for time in-
variant systems whose parameters are constant.
2 LMS algorithm and basic lemmas
Consider the following Jinear time-varying system
ACe,z)y(e) = B(e,z)ule) + o(2), (3)
where {z(2)| and {¥(2) | are the input and output se-
quences of the system, respectively, {v(t)] is a
stochastic noise sequence with zero mean, and z~' is the
unit backward shift operator, i.e. z'y(2) = y(z-1),
z"lu(t)=u(t—1),A(£,z)amiB(t,z)aIEIimc-vary—
ing coefficient polynomials in the unit backward shift op-
erator z7!, and
At,2) = 14 gft)z!

+ 0y(2)z 2+ + @, (D)27%,
B(t,z) = bi(e)z™' + bp(t)z7V 4 - 4 ba ()27
Define the information vector ¢ ¢ ) and the time-vary-
ing parameter vector (¢ ) as
§(1-1) = [a1(2),a2(t), ", a, (1), 5:(2),
bz(t),"',bn‘(t)]T CR.n=n,+n,,

p()=[-y(-1), ~y(2-2),, ~y(t-n,),
w(i-1),u2(2-2),,u(t-n)]" € R,
where the superscript T denotes a matrix transpose.
Then equation (3) can be written in vector form as
y(t) = o7 (£)8(: - 1) + v(2), (4)
where §(t) &€ R® is the time-varying parameter vector of
the system to be identified, ¢(z) € R is the regressive
information vector consisting of the observations vp to
time (¢t - 1).
The LMS algorithm of estimating the time-varying pa-
rameters #(¢) is expressed as
8(e)=8G-D+ pp(Hy () -@T(£)8(:-1)],
(5)
where & (1) is the estimate of #(¢) at time ¢, 4, is a con-
vergence factor or stepsize. The analysis indicates that as
long as the convergence factor satisfies 0 <
wll @(t) |2 < 2, the IMS algorithm is convergent.
For convenience, the ILMS algorithm is gererally modi-
fied as

8() =8(: - 1) + y,rﬁ;‘m)_Tz[y(t) -

P ()8t -1)], 0 < py < 2. (6)
Lemma 1 For system (4) and algorithm (6), define
the transition matrix

L(t +1,1) =[I—p., 18€e, ),

L(i,i) = 1, e (0,1]s

||c,r>()l|2

(7
H; is non-increasing, and assume that the following
strong persistent excitation condition holds'*! ;
(AD)
18 :
al < Wg@(; + l.)pr(t + I)GPT(t +i) <
BI,as.,t>0,
D<cax
Then
o b A LT(t 4+ N, 8)L(2 + N,t)] <
_ Na#uh’-l
2(1 + M}(N* 4+ 1)
where A,...(X) represents the maximum eigenvalue of
the matrix X.
Proof Let vy be the unit eigenvector corresponding to
the maximum eigenvalue, g;, of the matrix L™(z + W,
£)L(t + N,t), and constructing difference equation!®’

B < o, forsome Nz=n

8.5, M A nAS,

X '-[I _Q(Mil_]x _
e D IPYE ) Eae
L(i +1,i)x, x, = vy, (8)

using the property L(¢,i)L(i,s) = L(t,s), we have
gy = LGt + Nyt)x, = LCt + N, t)vg,

| 2 en 2 = o327t + N, e)L(t + N,2)vg = pys

_elide™(i)
x'lri-lxi-rl = x'lr[I - Hi 1+ Il q-"(l) ” 2] X =

211 - 2

_e(ile™D _p,
1+ [ G)I2

2 1 o) |2} e™(i)
ET 0 ety 2R s

pi2 - ple(i)e"GY,
- ety iz %=

| @"Ci)x; 12
£ — #;(2 2 1+ (i) I#

For any p1. € (0,2), equation (8) is stable. For simpli-
fying proof, letQ < g, < 1, we have

Pl(z f-"—x) " " 1)(-";)”" ] = " *; " 2_ ” Liel ”
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& H@"(s + i)l

SFi Y e+ )2 S
-1

@"(s + i) |l ?
o#x+|(2 F|+:) 1+ | ‘F’(‘ +i) ”2 =

| x, 2 =1-p. (9
For any i € [0, N - 1], using the formula
(D ab)? < (2 aD(2 W,
from (8) and (9) we have

” X+ = Yo H =

2 T

- ” X+ N H

o5 + )™t + )

”2 1+;l+ N?(I‘FJ)HZ K f

-1

$ FoCe + )l 11 @"(s + j)a, |l
Fisj

|l <

1+ leC+ )2 <
N | oT(s + )z, 2
. : N & pPRLITY; 12
L i T T g e DI S
. < “ ?T(l +j)x;+j ”2 12
[‘gf‘“"n helCe+ 1127 =
Jill-p) s/ N(1-p). (10)

Taking the trace of condition (Al) gives
() 1% < M = aNg,a.s.,t > 0. (11)
Since p, is non-incereasing, pre-multiplying and post-
multiplying both sides of condition (A1) by vy and using
(9) and (10) give
N, < vEEqv(l + e (t+ Do <

1+ M 8 ol + )™t + i)
F:+H-1ﬂ°§#'“ 1+ (e +a)!? o =

1+MZ " ?T(l*' l)(”ﬂ-xui"'xui)”z
Easnot SHEY 1+ ele+i)l?

2(1+ M) | oT(s + i)(x.; - vo) i 2
HiaN-1 [§F:+; 1+ s+ i)]12 *
N-1

=

AP+ D)muili®
et I O E

Jl+_2[2 by - s 2+ (1= p)] <

Hi+N-1 =t

2+ M) vy = o) 4 (1= p)] =

Hran-1

gl"'_l(Nz + 1D -

HreN-1
The conclusion of Lemma 1 is reached.
If condition (Al) becomes!!]

o(t + )" (¢t + i)
§ 1+ g +ill?

p),a.s..

=2

af >0,a.5.,1>0,forsome Nz=n
Then

—21:—:';—‘2?—_11), a.s.. (12)

As g, = € (0,1), p, does not depend on ¢ and may be
denoted as o, i.e.

sl

N:
pép.sl—z(—lvz—aq':—”,a.s.. (13)

Lemma 2  Let non-positive sequences {x(t)!,

{a,],1b,} satisfy the following relation:
s(t+1D < (1-alx(t) + 5,6 =20

and a, € [0,1),2:1, = @,z(0) < =, then

hmx(t) < lim i

where it is assurned that the limit exists.

Proof See Ref.[1].
3 Convergence theorems of the LMS al-

gorithm

Theorem 1 For the time-varying system (4) and
algorithm (6 ), assume that the ohservation noise
{o(¢)| and the parameter changing rate {20 () = 8(s)
- 6(1 - 1)| are indepedent stochastic noises with zero
mean and are uncorrelated with the inpat {u ()}, i.e

(A3) E[v(£)] =0, E[w(s)] =0,
E(v(s)w(i)] = 0,
E[+(z)»()] = 0,
Elw()w™(i)] = 0,i 5 ¢,

(a5) E[+*(1)] = ol(t) g 0} < =™,

E[ fw(e) %] = 6%(s) < 0% < w=.
Condition (A2) holds, if the non-increasing comver-
gence factor satisfies g, € (2,11, 19 > 0, then the pa-
rameter estimation error, () - 8(s), given by the
LMS algorithm (6) satisfies
LmE[ [| 8(¢) - 8(s) 1*] =<

(Ad)

2N D 0(i + 1,5 + D ph-vsinoh + ab] < =,
i=1

where
@(i + 1,§) = pwi-1eta @i j),
O(i,i) =T, 0 kg N-1.
if g = p € (0,11, then

2
HmEL N 8Cs) - 68X < halpah + 25) A fp0),

where
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b = 4N§N2+11_
a
Proof Define the parameter estimation error vector
8(r) = 8(s) - 8(s), (14)

and assume that the §(0) and {v(t)| are independent,
E[ | 6(0) [|2] < =, using (4) and (6), we have

() = B() - [0 -1) + w(e)] =

Ble-1)4p m%%F@¢T(z)éc:-1)+u(z)1-w(a)=

e()e™(t) 1 £p(e) _
(=37 <z>||2”“‘”+1 [p() 22¢)-w(t)=

L(t + 1,68 — su(e) ~ w(t) =

_.L
+ el
L(z+1,t-N+l)9(t—N)+

3 : - sple =)
?;_;)L(!+l.l—l+l)[l+ oG 3

(t-i)-wle-i)].
(15)
Taking the nom | * | 2 of both sides of (15) gives
I 8Ceyl? =
BT(e-NIL™(t4+1,:-N+1DL(t+1,t-N+ 1) -

Bt -N) +28Tt - MLt + L,t - N + 1) »

N-1 .
. - p(£=1) ,
2 L(t+l,t—l+l)[l+ ” q)(t—l) " zu(t—l)—

w(t - i)] + II§L(:+1,:-;'+1)-

i +#'Ilz((; =t - ) - - D117 <

T -NL e+ 1, e - N+ DLGE +1,t =N +1) -
(e -N)+287 6 =Nt + 1, =N + 1) -

N1 ‘ ] D |
g L(‘H"_Hl}(ﬁ%”(;_‘)_

w(t—i)]+N§ | (e + 1,6 -i+1)-
=0
Hi :‘?’(3—5)

[1+ " ‘P(t— )”zu(z— i) -w(t- !)]”2

(16)

For any i = 1, the maximum eigenvalue of the matrix

LTt + 1,0 - i+ 1)L(t + 1, - i + 1) is equal to or

less than unity. Let T(:) = E[ || 8(¢)} | 2], taking the

expectation of both sides of (16) and using Lemma 1
and conditions (A3) ~ (AS) give
(1) <

NYy+0+

WE R ARl I F <

P:-N+1T(E

oma U= NN 2 [ o= + (1=

-l

P:-N+1T(t—N)+2NE [piiok + 03],

(17)
Let: = N, + 5,05 k< N -1, we have
T(t=N, + k) <
otk TING=1)+ k) +
2N2[F%V[i—1]+h+lﬂ'i + ﬂa] =
S(i+1,1)T(k)+
203 0(is 1, i+ D) i inat+at], (18)

1=1

since g, € [pg,1], 0 > Q, using (12}, we have
}_igE[ 8¢y 2] =
!l_l’lET(l =N;+k) = ]__I;IET(E = Ni+k) =

2N 0(i + 1,5 + D pdgoernd® + a31.

_ (19)
Aspy = p € (0,1], using (13), we have
timEL 1| 8¢6) 2] = ”’2 &+l <
IND2(N? & 11[ 242 , 02] (20)

Nay
This proves the assertion of Theorem 1.

Corollary 1 For time-varying stochastic systemns
y(r) = ()80 - 1) + v(1).
Letf'(z) = Qin Theorem 1 give the best convergence
factor ;2 = min(%,l), the minimum estimation error

upper bound is '
min f{u) = min(2k, 00, , ka2 + kal).
Theorem 2 For time-invariant systems
y(t) = @T(1)8 + v(t),

under the assumptions of Theorem 1, condition (A2)
bolds, if the convergence factor satisfies

p.:%,(](csl.

Then the mean square PEE, E[ || #(¢) - @1/ 2], given
by the LMS algorithm (6) converges to zero at the rate

ofo(%).


http://www.cqvip.com

No.3 Performance Analysis of Least Mean Square Algorithm for Time-Varying Systemns 437

Proof Define the parameter estimation etror vector
B(t) = 8(1) - 4.
A similar derivation of Theorem 1 will give
(1) <
Os-nni TCE-N)+

N%E[ﬁ"—'f%v(z—ﬂ 12] <

-1
LenatTCe = N) + N2 2 6. (21)
i=D
Using (12), it gives
T(t) <
Le-nai TCE = N) + Npihopaod <
Ne Nzc‘t%
(- AN+ 1):“)T(t - N+ (£ - N+ 1)

Using Lemma 2, we have
LmE[ §8(:) - 611*] <
i NG 2N+ 1) (2 - N+ 1)
m ~3 '
P Na

This completes the proof of Theorem 2.
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