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Abstract: The paper is concemed with the reliable controller parameterization problem. A procedure for designing a fami-
ly of reliable nonlinear H., -state feedback controllers is presented. These controllers ars obtained by intercormecting the * central
controller’ with an asympiotically stable free systetn that satisfies one additional cascade condition. The resulting closed-loop
nonlinear system is reliable in the sense that they provide guaranteed local intermal stability and H.,, performance not only when all
actuators ars operational but also when some of actuators experience outages. The results of this paper provide a deeper insight
into the synthesis of the reliable nonlinear H., stale feedback.
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1 Introduction

In recent years, comsiderable attention has been paid
to the design problems of reliable linear control systems
achieving various reliability goals, and some design
methods have been given by several authors (see[1 ~ 3]
and the references therein). In Particular, Veilette et
all!! present a methodology for the design of reliable lin-
ear control systems by means of the algebraic Riccati e-
quation approach from linear H. -control theory, such
that the resulting designs provide guaranteed closed-loop
stability and H. performance not only when all control
componenis are operating, but also in the case of some
admissible control component outages.

The above results for linear systems have been extend-
ed to nonlinear systerns by Yang et ail**), Liu et ail®]
and by means of the Hamilton-Jacobi equation approach
in nonlinear H, control theory .

Frequently, in designing a control system there are
other design objectives in addition to the underlying con-
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straints of internal stability and disturbance attenuation.
One way of solving these more complex control prob-
leras is to search over the set of controllers which solves
the underlying Hu-control problem for a controller
which satisfies the additional design objectives. There-
fore, an important problem is the parameterization of
controllers which sclve the nonlinear H.. -control prob-
lem. Parameterization procedures of controllers solving
locally the H,-control problem were given in [7 ~9].
The purpose of the present paper is to extend the tech-
nique developed in [9] to give a family of reliable non-
linear H, state-feedback controllers. The resulting
closed-loop nonlinear system is reliable in the sense that
they provide guaranteed local intemmal stability and H,
performance not only when all actuators are operational
but also when some of actuators experience outages.
2 Problem formulation and preliminaries
Consider a nonlinear system described by equations of
the form


http://www.cqvip.com

448 OONTRCL THEORY AND APPLICATIONS

Vol.18

2 = f(z) + g1lx)e + 232;(55)“1-
(AT(x) :‘m]T- (1

¥y = %,
where x is the state defined in a bounded neighborhood =
of 0 € R*,w € RY, is the plant disturbance, u = [
iy *** 4]’ € ™ denotes the control input, z € B**™
is the output to be regulated, and the measured cutput
considered in this paper is assumed to be equal to the
statex.f(x),gl(x),gz_,-(x)(j =1,,m)and h(x)
are all known smooth mappings defined in the neighbor-
hood x with £(0) = O and A{0) = 0. To be more com-
pact, we denote

gx) = [guls) gnls) gan(x}].

Let 2 — {1,2,"*-,m] correspond to a selected subset
to actuators susceptible to outages. Then, the problem
considered in this paper is as follows.

Reliable control (RC) problem: Given system (1)
and a positive constant ¥, find a controller, such that for
actuator outages corresponding to any o ¢ (2, the result-
ing closed-loop system is locailly asymptotically stable
and has a local Z,-gain less than or equal to 7.

For o — 02, introduce the decomposition

g2{x) = ga{x) + g25(x),

x

where
82(%) =8, (N galx) 8,2 gulx) - 8,{m)ge{x)]
with &, defined as follows:

8, (i) = {

When actuator outages comesponding to ¢ (— {2 occur,
the resulting system can be described by

1, ifi € g,
0.,ifiga.

{a& = f(x) + golx)uy + g{x)w, )
Z = [R{z)T u;]T.
The following inequality is cbvious and will be used in

the sequel:

82 (%) 822 )" < g20(%) g2a(x)", foro c 0.

Definition 1'!  Suppose that £(0) = 0 and A{0)
= 0. The pair { £, k] is said to be Jocally detectable if
there exists a neighborhood U of the point x = 0 such
that, if x(¢) is any integral curve of # = f(x) with
%(0) € U, then h(x(s)) = Ois defined for all ¢ = 0
and h(z(¢)) = Ofor all ¢ > O iroplies lim= () = 0.

3 Main results
Theorem 1 Suppose that {f,A! is locally de-
tectable. If the Hamilton-Jacobi inequality
Hi(x) =

Vla)f(x) 4 g Vel (n) gule)T -

(g:(x)gz(-")T - 2gm(x)gm(x)T)) VI +

Ax)"h(x) <0 (3)
has positive definite smooth solution ¥(x) > O with
V(x(0)) = 0), where

walz) = 2—;2g1(x)1‘v,(xﬂ.

ue (%) = - (=) W2,

Then, the controller

u=u,(x) (4)
solves the RC problem.
Proof Along the trajectory of system (2), we have
dv _
d: ~

Vo {x)flx) + V(x)g(x)e +

Vix)galx)u - Vo(x)ga{x)u, <

fo"' nglw+vzg2u+% Vzglnggavz"‘u:uas
VofeVeogio + Vegans g VeganglaV? + ula, =

V.f+V.giw+ I u+%g{V£ I 2—u§ug—%gmggﬁl/£.
Hw =0andz = z.(x), from the condition in Theo-

remlanduz.j.-c_:_u";u.,“@hﬂ'v’e

4av
d:

- Yw.(2)To. () -
Alx)Th{x)—ues{x)Tuas:{x) <0.
Observe that any trajectory satisfying V(x) = O for all ¢
= 0O is necessarily a trajectory of
2 = flx) + gy (x)un;s),
such that x(¢) is bounded and A(x(¢)) = Oforall ¢t >
0. Since {f, k] are locally detectable, limz(z) = 0.
Thus, the closed-loop systems (2) and (4) are locally
asymptotically stable by LaSalle’ invariance principle.
On the other hand, we have

dv 2 2 2 _
Y al - 2lel? -
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dV
de *

V.f+ Vgio + Vgou +

+ AT+ udu; - Ve s

T VetraglaVie w24 8Th-2 | 2=

1
Vf+ 472V z 8181 V#_ 4 V gmngT+hTh +

| utg g3VEI2- Il v - 5 gTVE 12

Ifu = us(x), from the condition in Theorem 1, we
have

W lsl-Alwl?go.  (5)

For any given T > 0, the integration of (5) from Ot T
yields
V(1) - V(0D 4] (1l 5 17-7 T w | e 0.

(6)
Therefore, | |1 1| %ds < | 7% | 1| %ds holds.

In the next section, a family of controllers solving the
RC problem will be proposed. The family of controllers
to be considered is described by dynamic equations of
the form'®’

E=f(8)eg1 (). (8)4ga( &) [u (&) +c(9)],
[7] = a(p) + b(7p)(x - &),

u=u«lx)+c(y),

(7)
where £ € R"and 7 € R’ are defined on some neighbor-
hoods of the origin. a(7),5(p) and c(7) are all
smooth functions with a(0) = O and ¢(0) = 0. We
show how a(7),b(7n) and ¢(7) should be chosen to
solve the RC problem.

The closed-loop system (1) and (7) can be described by
{i==f.(x.) + g(x )@ - w.(5)],

z2=[R(x)Tu™]" = [A(2)T (u. (x) 42 ())TTT,

(8)
where

% = (%0

fo(x,} =

[f(x)+gn(x)m-(x)+gz(x)u-(x)+gz(x)c(r;r)]

T 1%,

F(E v gi(B)wu (E)+82(8)u. (E)+ga(£)e(n) |,
a(7) + b(p)(x - &)

gi{x)
gﬂ(xl') = I: 0 ]
0

Theorem 2 Consider system (8). S that the
condition in Theorem 1 is satisfied. If the Hamitton-Jo-
cobi inecquality

Hy(x) = Wy fi(x) + e(p)Te() +
#Ws_ge(x.)g,(x,)'rw{ +

g2a(x)ga(2)T 0 0
0 0 0|W: <0
0 00

1
2 Vs

(9)
has a positive definite smooth solution W(x,) with re-
spect to (x - £,7) (that is, W(x,) = Ofor s, =
[« %7 0]Tand W(x,) > O elsewhere) such that
Hy(x,) is negative-definite with respect to (x - &,
1) (Hx) = 0fors, = [47 27 0)Tand #y(x,) <
0 elsewhere } .

Then, the family of controllers (7) solve the RC

problem.

Proof Suppose that there are actuator ourtages corre-
sponding to o ¢ 2. Then the resulting closed-loop sys-
temn can be described by

je = f..,(x:l + gtﬁ[w - wi(x)]:

{za = [A(x)T u;‘]T, (10)
where
%, = [27 &7 VT]T-
fe&(-":e) =

F(&)+gi(8)wa (8)+g2(8)un (E)+g2(E)e(n) |,
a(q) + b(g)(x - &)

g:1(x)
geﬁ(xe) '—"l: 0 ]
0

‘We have
Wx-.fu a (xl') =

rr(xhgl(x)w- (x)+gz(x)u.a(x)+gx(x)ra(7])]

=

822} (1. (x) + c,( 7))
W fo(x.) - W,_[ 0 }
0
g20(x)gaa(x)T 0 0
W,,f.(x.)+%W,,{ 0 0 O]WT
0 00

%[u.a(x) + e (P I Muea(x) + (]
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Note that
Ws.(ﬂi(xg) + g,(xe)[w - El)*(x)]) +

el 2= P llw- wals)l?
W, (felx.) + glx ) w - we ()] +
el I2= 7w - wulx) I?+

gaa(x)gal(x)’ 0 0
5" 0 0 0|W: +

0 0 0

Sluealsd + e (P T nagl(®) + e )] =
Hy(x) + W.g(x)[w - w.(2)] -
72“01-(05(1)”2-
+ % lwwalx) + c(p) 2%

This shows that, along the trajectories of the closed-loop

system (10),

dW
FT

Hy(x) + Wxg,(x,)[cu —wulzx)] -

1
—— W Twl'
4],2 x‘gﬂge x

7’2”:0 w.(:ﬂ)" “’;ge W:'+

E I tealzd+e (2= e, () 1247 | w-wa (2] |2 =
Hy(2)- 7| w- . ()5 5002 WE, 1 -

bl 12422 lw-w. () [ 24 L aa@dee(p) 112

Similar arguments show that
dv
dt =

Hiz)+V, gw+V, gou+0 2 V gmgznlﬂ+

1
Sy —hTh-7 lwu 2 17-2]l 2. g %=

Hi(x)-] =1 1-)’2 lawll?2-%? |l w-w.(x) |2+

e, ()12 + u;rmcr
Consider the candidate Lyapunov function
Ulx,) = Viz) + Wis,) > 0.
Along the trajectories of the closed-loop system (10},

we have

di
di =

Hi(z)+Ha(x)- [z 0247 | w 12-

7 IIm—w.(x)-zngf 2. an

Setting & = 0 in the above equality yields

(}il: <H/(x) + Hy{x,) - |z ||* -

')’2 "w*(x) +211geWr "2 (12)

which is negative-semidefinite near », = 0 by hypothe-
sk . This proves that the equilibrium x, = 0 of the
closed-loop system is stable. To prove asymptotic stabil-
ity, observe that any trajectory satisfying U{x,) = 0for
all ¢ = 0 is necessarily a trajectory of
2= fx) + ga(2)(u.5(2) + (7)),

such that () is bounded and A(x(:}} = Oforall ¢ =
0. In addition, the negative-definiteness of H,(x,) with
respect to (x - &,7n) implies that x{¢) = £(:) and
7(t) = Ofor all t » 0. Since {f, k| is locally de-
tectable, ETx(”) =0, andthusﬂrgE(t) =0al: >
0. Together with 7(t) = O for all : > 0, we can con-
clude asympiotic stability by LaSalle’ s invariance princi-
ple.

Furthermore, since H;(z} < 0 and H,(x) < 0by hy-
pothesis, (11} implies that

o lalr-vlel<o (3

For any given T > 0, integration of (13) from O o T
yields
D) - DOl 1772w [ e 0.

Therefore, H Iz llde < ijz Il @ Il *dz holds.
Theorem 2 has suggested a framework 1o solve the RC
problem. More precisely, it has provided a general solu-
tion to the problem in question, in the sense that the free
system parameters a{ 7),5( 7} and ¢(7) are not speci-
fied, except that the condition in Theorem 2 should be
satisfied. These parameters provide a degree of freedom
to achieve additional desired control performance.
Although a general solution has been given by Theo-
rem 2, the function H,(x,) thus found has 2n + s inde-
pendent variables and actually involves the free system
parameters. The following theorem, which is the main
result of this paper, shows how the condition in Theo-
rem, 2 can be met by reducing the number of independent
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variables by n while imposing an additional cascade con-
dition on the free system parameters.
Theorem 3  Suppose the condition in Theorem 2 is
satisfied. When )
A= f(0) + sy (Ww. () + g2(F)u. (¥),
ket
1= Ly el 150 )
7 a(n) + ()W 0
¢ = c(7),
(14)
be any smooth nonlinear system with a(0) = 0, ¢{0) =
D which satisfies the following condition:

The Hamilton-Jacobi inequatity
HB(?! 17) =
e o, 2 T4

a(n) + B(p)®
#owtglw)g,(w* .

27820 ¥ ) g2a( ¥V Q% + ¢(7)Te(g) <0
(15)
has a positive definite smooth solution ¢ (¥, 7):R* x
¢ — R such that H, is negative definite near (¥, ) =
(0,0) and its Hessian matrix is nonsingular at (¥, 7)
= (0,0).

Then, the family of controllers (7) solve the RC
problem .

Proof We claim that w(x,) = Q(x - £, 7) satisfies
the condition in Theorem 2. Cleady W(x,) = Q(x -
£, ) is positive definite with respect to {(x - £,7). It
remains o prove that H(x, ) is negative definite with
respect to (x - &, 7). To this end, set

e=x-8&, e, &,7) = [Hyx,) ], gy
Then a simple calculation shows that

m(o,£,0) = D’[ﬂ(_%,_f._ﬂ] =0,

e e=0,p=0
[aﬂ(e,f,g)] -0
de e<Op=d

Thus, similarly to the arguments in [12], I{e, £, 7)
can be expressed as

O{e,t.p) = [F 7' 1Mp(e, &, 77T,
for some continuous matrix ITy(e, £, 7). Moreover, it
is easy to verify that

FPH(W,n) FH(T¥,3n)

11,(0,0,0) I ki
o T PH(W,n) FHT,q)
I ang ®=0,7-0

Since the latter matrix is negative definite from the con-
dition in Theorem 3, H,(x,) is negative definite with
respect 0 {(z ~ £,%). Then, by Theorem 2 it is con-
cluded that the family of controllers (7} solve the RC
problem.

The condition in Theorem 3 is of conceptual, mather
than computational, significance. It implies that cascade
{14) has a locally asymptotically stable equilibrium
(¥,p) = (0,0) and has L,-gain < ¥. For 2(y),
8(p) and ¢( ) satisfying the condition in Theorem 3,
family (7) solve the RC problem. In other words, The-
orem 3 provided a family of controllers solving the RC
problem. These controllers are obtained by interconmect-
ing the ‘central controller’ u = u.{x), with an
asymptotically stable free system that satisfies the cas-
cade condition.

4 Conclusion

The paper is concemed with the reliable controller pa-
ramelerization problem. A procedure for designing a
family of reliable nonlinear H.. -state feedback controllers
is presented. These controllers are obtained by intercon-
necting the * central controller’ with an asymptotically
stable free system that satisfies ope additional cascade
condition. The resulting closed-loop ponlinear system is
reliable in the sense that they provide guaranteed local
internal stability and H.. performance not only when all
actuators are operational but also when some of actuators
experience outages. The results of this paper provide a
deeper insight into the synthesis of the reliable nonlinear
H.. state feedback.
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