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Abstract: We consider the global regulation problem of nonlinear systems. A new definition of the global regulation for
nonlinear systems is given. The sufficient and necessary conditions for solving the global regulation problem for noolinear sys-

tems are obtained. Finally an example is given.
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1 Introduction

In the past decades, many scholars were interested in
the tracking and regulation problem for nonlinear sys-
tems!! "%, 1n the loca! case, Isidori and Bymes!!! have
considered the regulation problem of the following sys-
tems :

w = r(w), (1)

e = h(x)+ gluw).
By assuming that the dynamics w = r(w) is Poisson
stable and £ = 5L(0)7 + g(0)u is exponentiaily stabi-
lizable they have obtained that the local regulation prob-
lem of (1) is solvable via the state feedback if and only
if there are a neighborhood V of the origin and mapplings
w(w) and ¢(w)} defining on V, such that on the origin
¥V

{% r(w) = fla(w))+g{{w))e(w)+p(x{w))w,
R(w(w)) + g(w) =0,

{x = flx) + g(x)u + p(x)w,

(2)

In the global case, Dayawansaetal[21 have discussed
how to make the systems
4 = 56(:1: ' J’),
¥i = Y- b= L,oram - 1, (3)
¥m = a{z.y} + flx,¥)u
track a reference { or exogenous) signal (1), Assuming
that | r{¢) | < L, where L is a constant and | 17z} |
<ewithl < g < pandp = m + 1,e is sufficiently
small, the tracking problem of {3} is solvable by feed-
back with data x(¢),r(¢),*,r'®(¢). If the interal
flow of the regulator problem of (1) is C' flow equiva-
lent to the exosystems flow, then in {7] there are map-
pings ¢(w) and » (w) such that {2) holds for all  in
the global sense. In this paper, we will prove that (2) is
the sufficient and necessary conditions for solving the
global regulation problem of (1) under suitable hypothe-
ses.
2 Problem statement
Comsider the systems:
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i = flz,w,u),
W = r(w), (4)
€ = h(xrw)!

where x € R" is the internal state, w € B is the external
state, u is the control input and ¢ is the controlled or the
tracked output error. The functions appeared in (4) are
assumed to be of class C” and without loss of generali-
ty, assume that

£(0,0,0) = 0,7(0) = 0,4(0,0) = 0.
The following assumptions are made in this paper.

Hl For any invariant submanifold M < R**" of (4)
(x,0) E’M,I(xllj?l'{mh(x,w) = 0 implies A(x,w) =
0,¥(x,w) € M, where the invariant submanifold M
of (4) means that Y (xq,wp) € M, the solution
(x(t),w(t)) of (4) with x(0) = zp, w(0) = wysal-
isfies (x(t), (1)) E M, Yt = 0.

Remark 1 I e is considered as the output of the
full systems (4), then H1 implies some observability on
the invariant submanifold for nonlinear systems in global
sense. In fact, HI shows that it is practically impossible
that as the state of the system approaches large on the in-
variant submanifold M, but its output converscly ap-
proaches small. This may be possible only when the
state itself on M is unobservable.

H2 =z = f{x,0,u) is globally asymptotically sta-
bilizable via state feedback, i.e. there is a 4{x) such
that the zero solution of x = f(x,0,%(x)) is globally
asympiotically stable (GAS).

H3 Letasubset L CC' such that for any { € £ the
solution (x(¢),w(¢)) of Cauchy problem of the fol-

lowing equations
2 = f{x,w,l(w)),
w = r(w), (5)

%(0) =0, w(0) = wy € R
satisfies the following statement: if we denote &, (¢,
s), ¥,(¢,s) the fundamental matrix solution of the fol-
lowing partial variation equation of (5)

£ = 50,0l Hw(6)))p

7= 5C(w(D)7,

then
V @,(t,5) b 7,67 12520, (6)

| Bolt,s) I 796", 125 20, (7)
where a,ﬁ,]{u.y,, are positive constants which are in-
dependent of .

We can now state our global regulation problem as
follows: To find the state feedback law u = a(x,w),
a(0,0) = 0 and the open set = — R™ " such that

i) The zero solution of & = f{x.,0,a{x,0)) in (4)
is GAS and the solution ( x{¢)},w(t)) of Cauchy prob-
lem of equations (8) below satisfies (6) and (7)

£ = fle,w,alx,w)),
w = r{w), (8)
£(0) = 0, w(0) = wyq.

i) ¥ (%g,wp) € = the solution (x(¢), w(2)) of the
closed loop (4) with 2(0) = xp,%(0) = wq makes
lime(z) = limh(x(e),w(c)) = 0, under the feed-
back & = a{zx,w).

3 Main results

At first, we notice that the dynamics of the exosys-
tems # = r(w) in (4) is unforced and is uncontrol-
lable. I we depote its flow by &f(w), Y w € R and
the collection of all w-limit set of &{(w) by 2, then
any bounded solution w(t) of the exosystem follows
wl(t) = 02{i - o) and 2 is an invariant submanifold
of exosystem. Therefore we first obtain

Proposition 3.1 Assume H2 and H3 hold and & <
B. The global regulation problem of (4) is solvable via
state feedback only if there exist mappings e{w) € L
and S{w) € C" such that

{%wﬂzr(w) = f{S(w),w,c(w)), w € R,

w € 2.
(9)
Proof ¥u = a(x,w) €C and the set 5  R"*"
such that (4) satisfies i) and i) {see Section 2). By
H2 and Lemma B3 .2 and Thm. B4.1in [8], there is a
5(w) €C' 50 that

%wﬂzr(w) = f(S(w),w,a(S{w),w)),

w € R ,and ¥ (xg. wy)} € ATe, o'}, (where #Te,
o' }is defined as in [8]}, 1 x{¢} - S{w(2)) |~ 0(¢
— o). Obviously, ¢{w) = a{S(w),») € L. i.e.
the first form of (9) follows. Now we proved that
R{S(w),w) = 0,y W € JI. Since }-iEEh(x(r),

w(t)) = 0,Y (xp,wp) € A (e,a’), if w(t) is

h(S(w):w) =0,
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bounded, then w{ ¢) — {2{t— =) and there exist v €
fTard {t, |, 5, o {k— =), such that w{ s, ) = w(k
— ), Thus S{w(t,)) > §(){(k— =) by the con-
tinunity of §. Therefore,

‘l_ifgx(t;) =

lim(x(e) - Sw(2)) + limS(w(8)) = S().
Consequently, h{S{%),%) = 0. Conversely, ¥ wq €
f1, therc must exist a bounded trajectory w(:) and
{ti}, 6 = w(k— =), such that w(t,) = 1wy, (£ —
w). It is implied that k{S(wo),wo) = 0. According
to the acbitrarity of wy, we know that the second form of
(9) follows.

Theroem 3.1 Suppose Hl and H3 hold. The glob-
al regulation problem of (4) is solvable if and only if
there exist S € C',c € L,5(0) = 0,¢(0) = 0, such
that (9) is valid.

Proof From Proposition 3.1 the necessity is valid.
Now we prove the sufficiency. Suppose (9) holds and
by H2 there is a &{ x) such that the zero solution of £ =
Fx,0,k(x)) is GAS. Let

alx,w) = e{w) + k(x - S(w)),

then ¥ (g, wq) € A€ o'}, from Lemma B3.2 and
Thm. B 4.1 in [8], the sohution {x(¢), w(:)) of (4)
with x(0) = xg,w(0) = w, satisfies :1—1—15 | =(t) -
S(w(t)) | =0, where we take = = #{es’). ByHl it
only needs o prove that lime (1) = O for the bounded
trajectory w(t). K w(t) is bounded, by the contimuity
ofSandETlx(t)—S(w{E)N:O,ﬂ]enx(z)isalso
bounded. Therefore, the differentiability of & implies
that there exists a constant K such that

| hi{x(e),0(2)) - A(S(w(2)),w(1)) 1

K| x(t) - S(w(e)) 1,
and

| k{x(t),w(e)) 1<

| h{x(2),w(e)) = A(S(w(e)),w(e)) 1+

| A{S(w(e)), w(e)) I

K1 a(e) - S(w(e)) 1+1 R(S(w(e)),wle)) I,

{10)
Thus in accordance with {9) ard (10) and w(t) —
2(¢ - o) and the continuity of & we gain that
}_iﬂm(t) = !irEh(x(t)sw(t)) = 0.

For the local case, according to Theroem 3.1 we can
obtain the more extended result than that of in {1]. i.e.

if denote A = S‘E(0,0,0),B = %(0,0,0), then

Corollary 3.1 Suppose (A, B) be stabilizable. I
the dynarnics of w is locally stable {not asymptotically
stable), then the local regulation problem of (4) is
solvable if and only if there are a neighborhood V € |
of the origin (w = 0) and the mappings = (w),c{w) €
C',7{0) = 0,¢{0) = O such that

{%wﬂzr(uﬂ = flr(w),w,c(w)), Yw €V,
h(n(w),w) =0, yw € RN V.

{11)
Example Consider the nonlinear system
i = Ajx + Biuy + Baxus + Plx,w),
!
w:A2w+H(IwI2—-r3)w, {12}

i=0
e = h(x,w) € R,
where
(T w™) = (x) 23 23wy wy) €,

o> > > >0,
! is an even number.
-1 0 2 1
Ay =) 0 0O 1|, B, =)0],
0 -1 0 0

0 —l)
B '

1 0

It
oo O

00
lO,Azz(
01

Plx,w) = (p pr pa)f
is continuous fimction vector, P{x,0) = 0,y x and

maxm’ | P l< rd. his a cotinuous function, #(0,0)
(=, 0}E

= Oandg—;:ll(x,w) =0,¥(x,w) €R.

Obviously, system (12) does not satisfy the condition
in [1] in Iocal case, because its interior system is not
locally exponentially stabilizable, but only locally
asymptotically stabilizable, and also the exterior system
is not Poisson stable. As a matter of fact,

Yiwe, lwl <,

wl(t) > tw: lwl= rl,{t—=> =),
and

Y wo € B,

w(t)— {w: | wilg rgl.{t =+ =),

the origin (1 = 0) is not stable. smoeg—:l{x.w) 20,
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the coordinate transformation
$: (2T, )T > (e, 20,25, wy,wy)7T
is a local differomorphism,
From the inversability of ¢ there is a fimction o such
that in inverse transformation
¢ hile, v, 29, w,un) (2,0},
2 = ale.%2, %3, ).
Let
uy =~ {23 + 43),
vy =a — 2%y - py(x,w) ~

Fayt o
(_) [£(13+xzuz+m(:¢,wn+

3%
3k h
5‘_:53(" Xy + 23y + pala,w)) + T * el,
then the closed-loop system is
é = —- ¢,

%2 = 23 - x2(43 + #3) + pile,zy,23,w),
.'f3 = - %3 - x3(x% + x%) +ﬁ3(6,.‘¥2,ﬁ3,‘!ﬂ),

.
lw = 4w + H('. wl? - rHw,

1=0

{13)
where 5, = p{a(e, 22,23, 0), 20,25, 0), 0 = 2,3,
Therefore, Y ey € R we have | e(t) |i ¢ | and
:l_i.Te(t) =0 Since Ywg € & = tw: 1wl= 5.
w(t) € Q;,i =0,1,--+,1, there must be a mapping S
such that A{S{w),w) =0, yw € Q,,i =0,1,,1.
And from system (12) we have 2 = iﬂ;,whemﬂis

i=0

the w -limit set of the dynamics w. Therefore, the map-
ping c also exists. So by Thm. 3.1 the global regulation
problem of system (12) is solvable.
4 Conclusion

In this paper, the global regulation problem for gener-
&l nonlinear systems is discussed. The new definition of
the global regulation problem for nonlinear systems is
given. The conditions of solvability for global regulation

problem of nonlinear systems are obtained by using the
invariant manifold theory. In local case, our results ex-
tended from that of [1,4]. Finally, one case ( tracking
a constant signal) in [2] is considered as a particular ex-
ample in this paper, according to our result the condi-
tions of the solvability are easily obtained and another
example is given.
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