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Abstract: This paper deals with traffic rate control problems of networks. The incentive Stackelberg strategy concept was
introduced to the networking model that comprises subsidiary systems of users and network. A linear sirategy and a nomlinear
strategy were proposed 1o the elastic traffic problem. The resuls were then extended to the non-elastic traffic problem, Nurmeri-
cal examples and simulations were given to illustrate the proposed method,
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1 Introduction

We focus on the system model of charging, routing
and flow contrcl, where the system comprises both users
with uulity functions and a network with capacity con-
straints. Kelly'!) showed that the optimization of the
system may be decomposed into subsidiary optimization
problems, one for each user and one for the network, by
using price per unit flow as a Lagrange multiplier that
mediates between the subsidiary problems. Low and
Varaiya?) and Murphy et al'* described how such re-
sults may be used as the basis for distriboted pricing al-
gorithms, and MacKie-Mason and Varian'®) described a
“smart market” based on a per-packet charge when the
network is congested.

As mentioned in Kelly”s work!!!, price per unit flow
is the mediating variable. The systemn optimum can be
achieved when users’ choice of charges and the net-
work " s choice of allocated rates are in equilibrium. The
equilibriom exists for elastic traffic systems. But for
most nonelastic waffic, the equilibrium does not exist
and the system optimum can not be achieved.

By using the incentive Stackelberg strategy concept,
we try to find a new way to deal with such a kind of
routing control problems. In a pame theoretic mod-
el56], there are at least two players who control their
own inputs to make the state of the system to reach their
own cutcomes from the systern, respectively. There-
fore, the game theorym provides a systematic framework
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to treat the dynamic behavior of noucooperative net-
works, Two major concepts in game theory, Nash and
Stackelberg equilibria, have been applied to the study of
noncooperative networks'® ="' In these references. the
game theoretic models are all based on the classical non-
cooperate strategy concepts.

In this paper, we consider the wmaffic mte control
problem by means of the incentive Stackelberg strategy.
which was introduced into the game theory by Ho et
al", The incentive strategy proposed here consists of
two parts, one of them being the regular price, and the
other being punishment price which varies on the vari-
ance of traffic rate linearly or functionally.

2 System model

Consider a network with a set J of resources, and let
C; be the finite capacity of resource j, forj & J. A set
S of users use the network with rates x = (x;, x5,
x, ). For each user s, the utility maximization is as fol-
lows.

USER, (U,34,}:

maximize U, (x,} - Ax,,

over x, =0, (1
where U,(x,) is the utility function of user s, and it is
an increasing, strictly concave and continuously differ-
entiable function of =, over the range x, = 0. A, is a
price charged to user s per unit flow, and also is the
component of the vectors of Lagrange multipliers for the
following problem of overall system.

SYSTEM(U, H,4,C):

maximize 2 Ulx,),

=1
subjectto Hy = x, Ay < C,
over x,y=0, (2}
where H and A are the 0 - | matrixes, y is the flow pat-
tem. And the Lagrangian form of the problem is
Liz,y,z34,p) =

Zs) U(x) - ATz - Hy) + p2'(C - 4y - 22,

(3)
where z is a vector of slack variables.
If the nerwork receives a revenue A, per unit flow from
user 5, then the revenue optimization problem for the
network is as follows.

NETWORK(H ,A,C;1):

&
maximize 2 A, %,

=1
subject to Hy = z,Ay < C,
over x,y = 0. {4)

From Kelly' s work!!), there exists a price vector A =
(AysAz, o+, A,) such that the vector x = (xy, %5, ",
x3), fommed from the unigue solution x, to USER, ( U/, ;
A,) for each s € S, solves NETWORK ( H,A4,C3a).
The vector x then also solves SYSTEM ( U/, H, 4, C}.

The problem NETWORK (H,A, C;4) is just oppo-
site to the problem USER, ( U,;4,), because there arc
the same parts A,z in their formulations with the opposite
symbols. So, they are non-cooperate in general .

We introduce the Stackelberg strategy in game theory
to the model™*] . The network should be the leader in the
game, and the vsers should be the followers who act at
the Nash equilibrivm among them. Note that both of the
users and network are allowed to freely vary the flow x,,
s =1,2,--,5. So if the leader wants vsers to be at the
rates which are arranged by the network, the leader must
have the leadership in the game which is indicated in the
following Stackelberg strategy.

&(x) = A, + p,(x,) - p, (x5, (5)
where p,(x,) is any function of x, to be determined. x;
is a desired point arranged by the network. Generally,
we can take p,(x,) as a linear function

p.(x) = g, (6)
where ¢, is some kind of punishoment price. It will be de-
termined by the leader.
3 Incentive strategy for elastic traffic
problem

3.1 Linear incentive strategy

In this section, we consider the linear function (6} as
the Stackelberg incentive strategy to force users to act at
the point x2. Replacing A, in (1) by £, with linear struc-
ture, the problem USER,{ U, 4,) becomes

USER,{(U,:¢,):

maximize U,(z,) - Az, - ¢.(z, - 2])x,,
over x, = 0. (7}

To get g, . calculate the derivative of (7) with respect
to x,, and let it be zero. Then let x, take the value at
x:. We get
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Ui{z) -2,
4 = xZ - (8)
Xa

So, the strategy should be

U, (z) - 2,
T

E:(x:J = A: (I, - I? . (9]

Xa
The following work is intended to prove that (9) is an
incentive Stackelberg strategy, i.e. (see [5])

£(x!) = A, (10)
and
arg max[ US(I.T) - Arxs - 4’_;(1_; - .r?)x_,.] = .1'?.
(11)

It is obvious that (10) is held from the structure of
£(x,)in (9), BEg. (11) means that the following in-
equality should hold

Ulxd) - Azl 2U(x,) - 42, - ¢,(x, - xD)x,,

Y x, # af. (12}
Now, denote by x¥ the optimal rate of user s which
maximizes the problem USER,(U,;A,). So we have
U(xf) -4, =0 (13)
and
Uix,) -4, >0,if x < b, (14)
Ui(x,) - 4, <0,if x > . (15)
If the optimal rates of users coincide with the arranged
rates of the network, i.e. x} = x, then preferred mate
of user 5 is just x;. Therefore,
U (x5) - Aa8 = Ulzd) - 2% > Uls,) - Ax,.
(16)
So (12) is satisfied in the case of x* = x!.

If x% % x;, we have two cases to discuss.

i) xf > z¢. Denote by V,(x,) the entire utility func-
tion of user s in problem USER, ( x,; ¢, ). Substituting
(8) into V,(x,), and calculating the first and second
derivatives of (7} with respect to x,, we can see V, ( x7)
= 0and V(%) < 0. So we can come to the conclusion
that V,(x7) > V,(x,). i.e. Eq.(12) holds.

i) x¢ < z. Actually, it could ot occur in this case.
1t is evident that % = €. At most, x7 = €. So there
cannot be x% < x§.

3.2 Non-linear incentive strategy
In this section, we deal with such a non-linear func-

fion as

[13

A (xf - x,)/x,, if x < x;,

p.(x) = {0, if x, = xZ,

(U (%) - Uz, i x> 28,

(17}

It is easy to see that (5) becomes &, (x,) = A,, if x, =

x7. It is just the first condition (10). To meet the sec-

ond condition, substitute (5) into (1} with the structure

described in (17). The problem USER, ( U,; 4,) be-
comes

USER,(U,;p,(*)}:

maximize W, (x;)},
(18)
over x, =0,
where W,(x,) = U/(x,) - Az, - p,(2,)x,.

We choose p,(x,) = A,(x5 - x,)/%,, when x, < z{.
We have W,(x,) = U,(x,) - Azxl. So, we can see
W,(x,) < W,(z7) for U (%) < U(zD).

We choose p,(z,) = (U,(z,) - U,(x))/%,, when
x, > x5. We have W,(x,) = U, (x)) -
can see W, (x,) < W,(xf) for Az, > Az;.

In both cases, it is shown that W,(z{) > W,(z,)
which indicates the salisfaction of the second condition
for incentive strategy.

4 Incentive strategy for non-elastic traf-
fic problems

In a practical network, however, the delay occurs
very often. The more the traffic rate is closed to the ca-
pacity of resources, the higher the delay will be. There-
fore, the utility function can not be always increasing.
In this section, we are to deal with the problem that the
utility function U, (x,) is concave but no longer increas-
ing. In such conditions, the Lagrange multipliers of such
problem should be zero and can not be taken as the price
for per unit flow.

So we must consider now A, > 0 as a regular price de-
termined by the nerwork. Assume that ' is the optimal
rate for problem SYSTEM (U, H, A, €), i.e.
Ui(x;7) = 0. And assume also that x¥ is the optimal
rate for problem USER, (U,;4,), i.e. U,(x}) - A, =
0. It is obvious that z; = z} if &, 3 0. The problem
here is to find an incentive strategy to force users to act
at the point %, rather than x;. We use the linear function
here again, under which problem USER, (U, 4,) be-

Ax,. So, we
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USER,(U,;p,):

maximize U, (x} - Ax, — g, (x — xJ ) x,,
over x = 0. (19)

By taking the following steps, we can determine what g,
should be.

i) Calculate the derivative of (19) with respect 1o x, »
and let it be zero;

i) Let x, take the value at x," . By rearrangement, we
getg, = - .rl,/x: .

1t can be easily shown that there is an incentive Stack-
elberg strategy under the condition

Ui{x] )x)

—
Eq. (20} means that the regular price should be deter-
mined in a reasonable range.
S5 Numerical example and simulation
5.1 Elastic case

We take the example from Kelly’ s work!'l. Take
U,(%,) = m,logs, and let finite capacity is € = 10. The
optimal points for problems SYSTEM (U, H, 4, C),
USER,(U,54,) and NETWORK (H, A, C;4,) are the
right end of the interval (0, 10], respectively, i.e. x
= C = 10.

Figure 1 gives out the result of USER, (1/,; 4,) with
m, = Sand A, = Q.5 for two different points x§ = § and
x; = 6, respectively.

A, < (20)

W)
75

25

-73

Fig. 1 Curves of the functions for problemy USER,,

In each case, the maximum is really at x;. For xy =
6, a contour illustration is given in Fig. 2 from which
one can see the optimal point clearly. The set of curves
is the contour of the function for user s in problem
USER,{ ¥/,;A,} and the line with tangent ¢, = 1/18 is
the incentive stratcgy. We can see that the maximal val-
ue of the function of the user along this line is got at x,
= x; = 6, the tangent point of the line and the contour
curves.

el
L
liil'!ﬂ//// _

to
rate xy

Fig 2 Contour illustration of the aptimal prablem
From Fg.3, we can see how a non-linear incentive
strategy forces users to act at x5. According to (17), for

x: = 6, we have

6_‘ .l} .

_;_+(_2x_x, if x, <6,

Ej(x;} = _;_s lf X, = 61
1 5logx, -1 .

; + (lo xx Ogﬁ), if x > 6.

Fig.3 gives out the result in the contour curves, where
m, = 5,4, = 0.5. The folding curve is the non-linear
incentive strategy £,(x,). We can see that, along the
curve, the maximal point of m, log x, — Ax, i5at x, =
Gand A, = 0.5,

—

—

i
06 “‘[{ ?-'
Ny
D J’i"i'{

6 8 10
rate x;

price lambda
S (S

b

Fig. 3 Contour illusiration of the aptimal problem
with nan-lingar incentive strategy

5.2 Non-elastic case

To illustrate the result of a non-elastic problem, we
introduce U,(x,) = mylogx, + mylog{C - x,). The
example is just the extension of that in the previons sub-
section. It is easy to see that x, = arg max U,(x,) is
taken in the open set (0, C). For instance, x, = 3
when (m,;, mp) = (3,7}, %) = Swhen (m,,my) =
(5,5}, = 7when(m,,my) = (7.3).

From Fig. 4, however, we can see that x; =
arg max[ U,(x,) - Ax,] are a) 2.15477, b) 3.81966
and (c) 5.78046, respectively. 1t indicates that users
prefer x% (for instance, 5. 78046 in the case m,, = 7} W0
x, (= 7).
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2 4 6 5 o
=5
=10

Fig. 4 Non-increasing concave lunctions of users
and their optimum

It can also be seen in Fig.5 that the Lne £,(x,) = 0.5
is just tangent to contour of the function &/,{x,) - Az, at
x, = 5.78046. Note that £,(x,) = 0.5 means that the
regular price is A, = 0.5 and the pumishment price is
null, Users would rather take xy = 5.78046 than 2" =
7, if there were no punishment price in the strategy .

2
2 1.75
2 15
£ 125
g
E. 1 //'\
0.75 .
s \/
0.25 i ]
0 2 4 6 8 10

rate x,
Fig. 5 Contours for problem (1) with non-increasing con-
cave utility function and the linear incentive strategy

Figure 6 gives out the peoretric illustration of the in-
centive strategy. The line of the incentive function is just
tangent to the contour of the utlity functon ¥, (x,) -
Az, at x, = 7. Along the line, the maximum point is
just x, = 7. So, under the incentive strategy, users have
to choose the rate x: =7,

price lambda s

0.75
0.5

025, 3 )

rate x,

Fig. 6 Contours for problem (1) with non-increasing concave
utility function and the linear incentive strategy

6 Conclusions

In this paper, we discussed the maffic rate control
problem for a kind of network systems, by introducing
the concepts of non-cooperative game theory. The net-

working models based on elastic and non-elastic traffic
are considered and the valid incentive Stackelberg strare-
gies are proposed and illustrated. It is quite a new way
that the networking traffic control problem is dealt with
by using the game theory. Still, much challenging work
is waiting for us o cope with, such as the studies on
practicality and techmicality.
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