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Abstract: This paper deals with the stability of {5, ) -methods for stiff delay-differential-algebraic systers with one-in-
dex. In particular, we prove that (resp. swong) G(c,p,q)-algebraic stability of the (p, ¢ )-methods for ordinary differential
equations (ODEs) leads to (resp. asympiotic) global stability of the corresponding methods for stiff delay- differential-algebraic

systems.
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1 Introduction

In the last twenty years, the research for the vumerical
solutions of delay differential equations (DDEs) and dif-
ferential algebraic equations (DAEs) has made great ad-
vances (cf.[1~12]). In particular, papers [3~7] ex-
tended the above topic to nonlinear stff problems. How-
ever, up to now, only partial results have contributed to
the numerical solutions of delay-differential-algebraic e-
quations (DDAREs) (cf.[11,12]) and deal mainly with
lincar and nonstiff problems. The systems, with delay
and algebraic constraint, often arise in some engineering
fields such as automatic control, electrocircuit analysis
and chemical engineering. When the classical Lipschitz
constants of the systems are very large, it will suffer
from stiff phenomenon in the computational procedure.
To solve this problem, in the presented paper. we deal
with the stability of (p, o }-methods for a class of non-
linear stff systems of DDAEs. Some algebraic criteria

on global stability and asymptotic stability are obtained.
2 The statement of the system
Consider nonlinear systems of DDAEs
2 (e) = fla(e)nle = o)v(8)oy(t - ), £ =0,
{g(x(t),:r(t)) =0, ~T<t <+ @,
x(t) = p(t), ~r gt g0,
(1)
and
w'(e) = flue)ule - o)o{e),o(t - 7)), t =0,
{g(uft),v(t)) =0, -rgt<+ ™,
w(e) = ¢(e), ~r1 5t <0,
(2}
where, v > 0,f:Dy— Dy, g: 02— Do Dy B x
R™ x [R" XR“!,DQQR“I"“LI)] ;R“l.f)z (_:IER":} are
continvous  functions, and the Jacobi matrx
dgl=,y)
dy
systems (1), (2) are of 1-index. By the existence the-

(¥ x,y € D,) is invertible, which means
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orem of implicit function, we know that the algebraic
constraint equations in (1) and (2) have a unique solu-
ton, respectively, '
y(t) = P(x(t)), o(t) = Plu(t)), —-r <t <+ =,
(3)
Substituting (3) into (1) and (2, respectively, we obtain
a'{t) = fx(e),2(c ~ o), F(=x(2)). D=z -~ ).
(4)
w(e) = fla(e),uls - o), M), Mult - o)),
(5)
In the following, we assume that (4) and (5) satisfy the
non-classical Lipschitz condition
(flzp, %0, 0(x) (7)) -
Flag, %0, P(xy), D(%2)), %1 - %) 5
ﬂ’“ 11—11"2+ﬁ”51*51”2+
Y Az 20, (x) T (%)) ~
fxa,%,0(x,),0(E:0) 1%,
¥ %1, 32, %1, %, € BRM, (6)
where, {*,*) is certain inner product in &%, || - || is
the induced nomm, and &, 8 and ¥ are some constants in-
dependent of stiff. All the problems (1) and (6) are

1 [ L-y(A+CMTT(A+ CM) + (A+ CH)"[ Iy~ y(A+ CM) ] -2al,
-2 (B+DM)T[£;-27(A+CM)]

and /; is a d-dimensional identity matrix. Hence, the

linear system (7) belongs to the class Dy(a.83,7) iff

matrix { — H) is nonnegative definite .

3 Stability of one-leg ( p, ¢ )-methods

Applying one-leg (p, ) -methods to (4) and (5),

then we obtain

o(E)z, =

R (a(E) 2,0 (E) %y, [ (6 ( E)x,) L0 (E) ).
(9)

p(E)u, =

hﬂa(E)u,,.a(E)un_m,P(a(E)un).P(G(E)un_m)},
(10)

where stepsize h = i, m is a positive integer, £ de-

notes the shift operator, and there is no common divisor
k &

between p(£) = M afando(s) = EB.E’(GU &

i=1l
£ &), in which «; and ; are real constants with the con-
sistency condition: p{1) = 0,0'(1) = (1) = L.

called the class Dy(a,B,7).
As an example, we consider a real 4-dimension linear
system
' () = Ax 4+ Bx(1 - ) + Cy(t) +

Dy(t-7) + E, 1 20, (7)
y(8) = Ma(2) + N, —r <t < >,
where A,B,C,D,E,M,.N 6 ]Rdxa, I(F} =

o(1)(~ v < t < 0)is known. (7) can be reduced
state space form

(1) =(A + CM)x(s) + (B+ DM)x(t - 1) +

CN + DN + E. (8)

For ¥ x;,% € RY(i = 1,2) we have

(A + CM)(xy - 2,0 + (B + DM ) (&, -

572);3’1—Iz>—ﬂ||x1—x1||2'-ﬁllil'-52”2-

¥ I (A+ €M) (2~ 25) 4 (B+DM) (&1-%,) || =

x] — X2 xp — X3
<272
X — x2 X — %2

where <+, *>» represents an inmer product in B¢ de-
fined by

n

< U1V:>= E(uilvi>1 iy, v e Emds

i=1
matrix

[£-2y(4+CM)]'(B+DM)
—2y(B+DM)"(B+DM)-25,
Moreover, x,,u, are approXimations to x(¢,) and
u(t,), respectively. In particular, z, = @(2,), 4, =
(t,) whenever - m < n < 0.

For further analysis, we introduce some notational
conventions

T T cen T T
Wy = Xp = Uy, Wn=(wnvwn+11 9wn+k-l) ’

k &
| &) =w.’E‘1,ll &% lale= }_J_Elggf:a,-,a,}.
where A = (87,87, .87 € B, G = (g) €
F*** is a real symmetric positive-definite matrix. Clear-
ly, | Il and || * | 5 are nonms in R* . Moreover, in
the following we assume that each matric norm is subject
to the cormresponding vectoral nomm.
In paper [13], for getting the numerical stability re-
sults on one-leg and linear (o, o) -methods ( for ODEs)
p(E)x, = hf(a(E)t,,0(E)z,), (11)
o(E)x, = ho(E)f(t,,%4), (12)
$.F.Li generalized the concept of G-stability, proposed
by G. Dalquist [15], to that of G(c, p.,q) -stability.
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Definition 3.1 Suppose that ¢, p, ¢ are real con-
stants with ¢ > Oand pg < 1, and there exists a & x &
real symmetric positive-definite matrix ¢ = (g,) such
that for any real sequence {a;}r,,

ATGA; - cAfGA, <

20(E)ap(E)ag - p(o(E)ag)® - g({p(E)ag)?.

(13)
where, A; = (a;,a;,1, " a1} (i = 0,1). Then
(p,0)-method (11) (or (12)) is called G(c,p, g)-
algebraically stable. In particular, (1,0,0)-algebraically
stable method is called G- stable.

The above concept will play an important role in the
subsequent analysis. Some G(¢.p, g )}-algebmically sta-
ble ODEs methods can be found in paper [13]. In paper
(5], based on G-stability and strong A-stability, C. M,
Huang, et al. obtain the results on numerical stability of
one-leg (0, o )-method for DDEs. In this section, we
relax the condition into (resp. strong) G{c,p, g)-alge-
braic stability, and obtain the global and the asymptotic
stability of one-leg (0.0 ~-methods for DDAEs.

Theorem 3.1  Suppose that one-leg (0, ¢ ) -method
(11) for ODEs is G(c, p, q)-algebraically stable with 0

< 1. Then when

2h{a+B) s p. B0, hg =27, (14)
the corresponding method (9), for problems of the class
Dy(a,f,7), satisfies

” Wak ” =

A 'y B e

m =0 Am -mgig-

|| o(E)w; I,

(15)
where n = 0, Aﬁrand Af,dcnote the maximum and the
minimum eigenvalue of matrix G, respectively.

Proof Assume that je,} is a group of orthonormal
basis in ™. Write
z_;aﬁeﬂ.

A¥ (aﬂnw Avivlr ",u’;“-”,._])lr, i = 0,1
It follows from G(¢,p,q)- algebraic stability, (6) and

(14) that
” l"l"-"rwl H'iG

>0 a) G -

Wy

—cll W 1% =

c(A5)TCAy] <

2o (E)w,. 0( Edew,) -
pllo(E)u, 12— qll ol Edew, 1% <
(2ah — p) | 6(EDew, 1%

260 | o(E)wn.n 12 + (B = g) Il p(BVw, 12 <

(2ah - p) 1 o(E)ew, 12 + 280l 0 (E)awn.n I 2,
by which we have
MW 1% <
cll Woll% + (2ak - p) | (B, I1% +
28h || 6(E}ew,_ 1% (16)
An induction to {16) yields

| Wl & <

S Woll2+ (2ah - p) )¢ | 6By, 1 4

zghi} el o(E)ay . Il 2. (17)

Furthcr with (17),(14) and condition0 < ¢ < 1 we
armive at
” Wm-l ”%F =

N Woll %+ (2ah - p) ) [ 6(E ), [

n+m

Z[s‘hZ lo(E)w,; 1% <

[ Wolls + 2ok~ p) 2 [l o Eda,c, 12

ha+m

28825 | 0o(Edenn_; 1* <

i=l
a+m

I WollZ 4280 20 |l 6(E)ewn_; |12 =

1=a+l

T Woll2 42803 Nlo(E)a 2.

Hence

I Wonr 12 < T Woll% + 260 _max [lo(E)w, 12,

(18)
by which it follows
Al o 1? <

GE Moo 1% + 260 max Nl o(E)w; |2,

]

Therefore, (15) holds.

The inequality (15) shows that the difference between
the numerical solutions of DDAEs (1) and (2) is
bounded by the initial valves of systerns and methods.
Hence method (9) is globally stable. In the following,


http://www.cqvip.com

830 CONTROL THECRY AND APPLICATIONS

for getting the asymptotic stability of the methods, we
introduce

Definition 3.2 The method (11} (or {12)} is
called strong &(c,p,.g}- algebraically stable if this
method is G{¢,p, ¢)- algebraically stable and the root
modulus of o{ &) is less than 1.

Remark 3.1 Since G-stability is equivalent to A-
stability (cf.[15]), strong G(1,0,0)- algebraic stability
is equivalent to strong A-stability {i.e.the method is A-
stahility and the root modulus of o(£) is less than 1),

A combination of Theorem 105B and Theorem 123D
in J. C.Butcher [14] yields.

Lemma 3.1 Given matrix 4 € ZF* and sequence
v, & . Then the solution sequence of linear difference
equation

Yo = ‘iyn—l +
satisfies
Lim ly.ll =0,
iff spectrum radius r{A) < lalld}_i_mnv,. = 0.
Theorem 3.2  Suppose that one-leg (o, ¢ ) - method
(11) for ODEs is strong G{c,p, g )-algebraically stable
with0 < ¢ < 1 and 8; 5= 0. Then when
hia+ Bl <p, B0, hg= 7, (19
the corresponding method {9} for the class Dy {a.2, 7}
is asymptotically stable, i.¢.

lim | w, || = 0.

n—~m

Proof A slight modification to (18) yields

| W2+ p=2h(a+8)] 2, ol Ele,_, |* <

1=0
' Wolll + 26r max | ol E}e, |2,
-mag -1

Hence

[p-2hia+ )] lo(E)e; 12 <

1=0
I Woll% + 26 max llo(E)w % (20}
il
From (20) and 2k{a + B8) < p it follows

lim | (B}, || = 0. (21)
Write
0 1 0 0
0 0 1 0
T=l e 0o o - 1 [Bh
B B B B
B B By B/

Vol.18
{0
0
K = :
0
g Ela,
\ B )
Then
Woe1 = JW, + K,. (22}

By (21}, we know that lim K, = 0. Moreover, in terms

F el

of the strong G(c,p,q)- algebraically sability of the
methods we infer that the root modulus of o( &) is less
than 1. Thus, the spectrum radius r{ J) < 1. Further,

by Lemma 3.1 it follows lim I| W,.i | = 0. There-
fore, lim (|, [l = 0.

With Theorem 3.1,3.2 and Remark 3.1, we further
have

Corollary 3.1 Supposed one-leg (p, o }-method
for ODEs is A-stable. Then, when
0<fg-a,7<0, (23)

the corresponding method (9) for the class Dy(a, 8, 7)
satisfies (15), which means the global stability .
Corollary 3.2 Supposed one-leg { o, ¢ }-method
for ODEs is strong A-stable. Then, when
O fig-a, 7«0, (24)
the corresponding method (9} for the class Dy{a,8,7)
is asymptotically stable.
4 Stability of linear (g, ¢ )-methods
solving (4) and (5) by linear ( p,o }-methods yields
pCEIX, = ha(E)fAX,, Xy, ['( ), (X, ))
(25)
plEMU, = hal E} (U, Uy, TUUL Y, DU ),
(26}
where X, and U, stand for the approximations = { ¢, } and
ult,), respectively, X, = @lt,) and U, = ¢(1,)
whenever - m < n < 0, and the other notations are the
same as that of {9) and (10).
A similar argumentation to Lemma 4.2.1 of S.F.
Li"™! yields the following generalized result.
Lemma 4.1 Suppose that sequence | X,| satisfies
{25) (resp.{26}). Then sequence

4 =

p(EYX, + hg(E}f(X,, X, 0, [(X,), (X, 1))
(27}
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satisfies (9) {resp. (10)) and

X, = a(E)z,. (28)
Oppositely, suppose that sequence {%,] satisfies (9)
(resp.{10}). Then sequence | X, | defined by (28) sat-
isfies (25) (resp (26)) and (27), where polynomials

I: 1

p(&) = Ep;-siamiq(e) ._,q,-s’mlﬂl

p(E)a(E’J +q E)p(E)
Theorem 4.1 Suppose that hnear(,o,a)-method
(12) for ODEs is G{c, p, ¢)-algebraically stable and 0
¢ < 1. Then when (14) holds, the corresponding

method (25) for the class D, (a . 3, ¥) satisfies
| i | <
I o(E) ||( 2SN 2 a0
AS ! N An -'"‘"E'
(29)
whene
= X; - U,

2, = plEVY + hq(EV AKX, X, T( XD,

I{X._.)) - QU U, U, T{U N ]

Proof By (27), we can determine sequences | x, |
and [z, }. From Lemma 4.1 and Theorem 3.1 it follows

” ﬂn+k ” = ”ﬂ' E) ” “ wn+k“ =
£-1 ™~ Do
ECTINE ST Ty
(30
whereas
@, =

pEY2 + kgl ENAX, Koo n (X)), DX, ) ) -
UL U, DU T(U )] =

;.

Accordingly, this completes the proof of Theorem 4.1,

The inequality characterizes the global stability of
methods (25) .

Theorem 4.2  Suppose that Lnear (o, o) - method
(12) for ODEs is strong G(c, p, ¢ )-algebraically stable
withO < ¢ < 1 and B; =« 0. Then, when (19) holds,
the corresponding method (25) for the class Dy(a, 3.
7) is asymptotically stable. i.e. lim | &2, || = 0.

Proof By Lemma 4.1 and Theorem 3.2 it follows

2,0 < NalEY N [l e |l —0,¢
Hence this theorem is proved.

n—)— W)_

With Theorem 4.1, 4.2 and Remark 3.1, we further
have

Corollary 4.1  Supposed linear (o, ¢ )-method
(12) for ODEs is A-stable. Then, when {23) holds,
the comesponding method (25) for the class Dy(a, 4,
¥) satisfies (29).

Corollary 4.2  Supposed linear ( o, o )-method
(12) for ODEs is strong A-stable. Then, when (24)
holds, the comesponding method (25) for the class
Dy(a,B,7) is asymptotically stable.
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