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Abstract: This paper focuses on a class of linear time-delay systems. We are concerned with the design of dissipative
static state feedback and dynamic output feedback controllers such that the closed-loop system is quadratically stable and strictly
(0,5, R) -dissipative. Sufficient conditions for the existerice of the quadratic dissipative controllers are oblained by using a lin-
ear matrix inequality (LMI) approach. Furthenmore, we provide a procedure of constructing such controllers from the solutions
of LMIs. Tt is shown that the solvability of dissiparive controller design problem is implied by the feasibility of LMIs. The main

result of this paper unify the existing results on H., coatrol and passive control for linear dme-delay systems,
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1 Introduction

Since the notion of a dissipative dynamical system was
introduced by Willems'?! , it has played a very important
rok in system, circuit, network and control engineering
and theory. Dissipativeness is a generalization of the
passivity in electrical networks and other dynamical sys-
tems which dissipate energy in some absiract sense. Ap-
plications of dissipativeness in the stability analysis of
linear systems with certain nonlinear feedback were first
discussed in [1,2]. Subsequently, dissipativeness was
crucially used in the stability analysis of nonlinear sys-
tems®4!, The theory of dissipative systems generalizes
basic tools including the passivity theorem, bounded real
lemma, Kalman-Yakunbovich lemma and the circle crite-
rion.

In the past decade, analysis and synthesis of H, and
the passive (or positive real} control of time-delay sys-
tems have received remarkable attention!®-®l. In H.
control, the small-gain theorem is used to ensure robust
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stability by requiring that the loop-gain should be less
than one at any frequencies by ignoring the phase infor-
mation. On the other hand, phase information is widely
used in the analysis of passive control systems based on
positivity theory. In the positivity thecrem, when a
(strict} positive real system is connected to a positive re-
al plant in a negative-feedback configuration, the
( strict} positive real system has its phase less than 90° so
that the closed-loop system is stable. But the loop-gain
is not used in guaranteeing the stability. Clearly, both
the small-gain and positivity theorems deal with gain and
phase performances separately and thus may lead to con-
servative results in applications. An early attempt was
reported in {9] to synthesize a controller that achieves
desired gain and phase margins by using state feedback.
Dissipativeness provides an appropriate framework! ™! for
a less conservative robust controller design, especially in
the applications where both gain and phase performances
are considered. This paper is concerned with the probl-
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em of quadratic dissipative control for linear systems tem (1) be

with delays. Namely, we design linear static state feed-
back and linear dynamic output feedback control laws to
simultaneously achieve quadratic stability and strict
quadratic dissipativeness.
In this paper, we shall use the following notation
(u,vip = J‘ZuTvdt,u,u e RrR*.T

2 Problem formulation and preliminaries

Consider the linear time-delay system described by
state-space equations of the form

(1) = Ax(s) + Agx(s - d) + Biu(e),
1) = € xlt) + Craxlt - d) + Dywl(t),
x(t) = p(2),t € [- 4,0],
where x(t) € R" is the state, z(t} € R? is the output,
w(t) € R is the exogenous input which belongs to
£,[0,),d > 0is a delay constant, 7(¢) is the initial
state vector, and A, A4, By, €y, Cy4and [y, are constant
matrices with appropriate dimensions.

The quadratic energy supply function E[™ associated
with system (1) is defined by
E(w,z,TY = {2,007 + 2(z. Sw)r + {w.Rw}y,

(2)
where ¢, S and R are real matrices of appropriate dimen-
sions with ¢ and R symmetric.

Definition 1 The system (1) is said to be strictly
(Q,S,R) -dissipative, if for any T >
scalar ¢ » 0, under zero initial state, the following con-
dition is satisfied

E(w,z,T) = alw,w)r. (3)

Remark 1 The above performance of strict (@, 5, R)
-dissipativity inchudes H. and passivity as special cases.

a)When Q = - 1,5 = 0, and R = 7%/, strict (.
S, R) -dissipativity {3} reduces w an H.. performance
mqum[s.sl_

b) When Q¢ = 0,5 = /, and R = 0,(3) corresponds
t0 a strict passive problem!®],

Without the loss of geperality, we make the following

(1)

0 and some

assurnption .
Assimptionl Q_=- 0 =0
Remark 2 It can be observed that Assumption 1

holds for both the cases in Remark 1,
Definition 2 Let the Lyapunov functional for sys-

J=

Liz,t)

= % Px +J' (e} Ve(z)de, (4)
d

where0 < P € R and0 < ¥V € R™". If there exists
a scalar ¢ > O such that the derivative of the Lyapunov
functional (4) with respective to time t{w = 0) satisfies

L{z,t) g- el =l? (5)
then the time-delay system (1) is said to be quadratical-
ly stable.

Theorem 1 Given matrices 0, S and R with { and
R symmetric, consider system {1) subject to Assump-
tion 1. If there exist matrices P > Oand V > 0 such that
the following LMI holds

PA+ATP+V PAy PB, - CTS c{of
-V - €18 cr, g

P sTc. —STCH —(R+Di S+ 57D D“Q-
Q € Q- G4 Q2 Dy -1

(6)
then the time-delay system (1) is quadratically stable
and strictly ( Q, S, R} - dissipative .

Proof Firstly, it is noticed that the condition (6)
implies
PA+ ATP + VvV PA;
ALp -V
Taking the derivative of the Lyapunov functional (4)
along the solution of Equation (1) yields
E(x,t) = 2"Px + x"P¢ + xTVx - xEde, (8)
where x; = x(t - d). Assuming that w = O, we have

J1 = < 0. (7)

Llz,t) =[x 2705[s" 2117 <
x 2
-e“ cell=l?  ©
x4
wheree = — A {J1) > 0,4, (") denotes the maxi-

mum eigenvalue of square matrix. From Definition 2,
the time-delay system (1) quadratically stable.

Secondly, if (6) holds, there exists some sufficiently
small scalar @ > O such that

J + diagl0,0,af,0l < 0. (10)
Hence it follows that
TQz +22'Sw + w'Rw = = L{x,t) + awlw. (11)

Integrating (11} from 0 to T, under zero initial condi-
tion we obtain that
E(w,z, T} malw,wip+ L{z(T}T) >


http://www.cqvip.com

B40 CONTROL THEORY AND APPLICATIONS

alw,w)r, (12}
for all w € I,[0,7T]and all T » 0. Therefore, by us-
ing Definition 1, when the condition (6) satisfies, the
time-delay system (1) is quadratically stable and strictly
(Q,$,R) -dissipative. This completes the proof.

Let us review the following key lemma to get further
results.

Lemma 11'2)  Given a symmetric matrix £ and two
matrices £ and I with appropriate dimensions, then
there exists a matrix K satisfying

2+ 3K+ I'K'E <0,
if and only if
sTaz, <o, r'ar, <o,
where 2 | and I'| denote the orthogonal complements of
5 and I” respectively .
3 Dissipative control of time-delay sys-
tems

Consider the following linear time-delay system

#(t) = Ax(t) + Ag(t - d) + Biw(t) + Byult),

z(t) = Cx(t) + Co(t — d) + Dywl(t) + Dpu(t),

y(2) = Cz(t) + Cox(t - d) + Dyult),

z(t) = n(e), t € [~ 4,0],

(13)
where () € R" is the state, 4(t) € ®™ is the con-
trol, w(¢) € [ is the exogenous input which belongs to
L,[0,%),y(t) € R is the measured output, z(1) €
R? is the controlled output, and A, A, By, Bz, €y, Cyy.
D1, Dy, €2, €3y and Dy are known matrices with ap-
propriate dimensions.

1) Dissipative control via state feedback.

The dissipative control problem we address here is
stated as follows: Design a state feedback controller

u(1) = Kx(t), K, € B™", (14)
such that the resulting closed-loop system of (13) is
quadratically stable and strictly (Q, S, R)-dissipative.

Theorem 2 Given matrices ¢, 5 and R with ¢ and
R symmetric, consider the system (13) subject to As-
sumption 1. Then there exists a state feedback controller
(14) for system (13) such that the closed-loop system is
quadratically stable and strictly (Q, 5, R)-dissipative if
there exist matrices X, > 0, ¥, > Oand W, satisfying the
following LMI:

Vol. 18
Qll Aa‘Xs le ¢13 N
XAl -7, - XCl8 xclol
T o —fTCMX, -(R+D'JleS+STDu) bf; % <0
o Q1 Cik, Q> Dy -1
(15)
where

Py = AX, + XAT + B,W, + WiB] + V.,

Py = By - (X,C] + WT%?;)S,

G = (X,C7+ WDR)IQI.
Furthermore, a suitable controller gain is given by K, =
WXl

Proof By applying Theorem 1 and Schur comple-
ments'® to the closed-loop system of (13) with x =
Kx, through straightforward matrix manipulations the
theorem is established.

2) Dissipative control via output feedback .

In this subsection, we will provide an LMI approach
to the strictly ( @, 5, R)-dissipative control via output
feedback .

Let the system (13) be the following dynamic output
feedback controller

{xx(t) = Agxx(t) + Bpy(1),

u(t) = Crag(t) + Dey(e),

where 2y (1) € B (0 < ng < n), and Ay, By, Cx and Dy

are appropriate matrices to be determined. The extreme

case ny = () represents static gain output feedback. By

introducing the augmented state vectorg = [x' zx],
we can obtain the following closed-loop system

(16)

{a;c(t):ﬁi(t)+74,,a:(:—-d)+§w(n), an
2(a) = Ca(t)+Calt-d)+ Dwlt),
where
[ Z = 4& +f?2Ké2, Zd = ;id +§2KC‘M,
E:Bl+ézmz1,
C = € + DpKCy, Cy = Ciy + DpKCaa,
D = D[[+Dl2m2h
Ay By . A 0 . Ay
ol Ma-[f Y-
Cx Dy o o™ Ly
- B n 0 B
Bl = 1]! 2 "[ 2])
L 0 I 0
K 0 0
S L L W)
2 ¢, 0 2d Cos 21 Dy
T 0
o[, m- 5]
1 0 12 D?z

(18)
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Let’s define a Lyapunov functional for (17)

Lix,zx,t) = 1 P% + J:_dx(r)TVx(r)dr. (19)

where) < P € R+ (+n) and0 < ¥ € R™". Us-
ing Theorem 1, the closed-loop system (17) is quadrati-
cally stable and smictly { @, §, R )-dissipative if there
exist matrices P > Oand V > 0 such that

A+ FTGTKH + H'K'GF < 0, (20)

where N
PA+ATP4+V  PA, Ph, - tTs Tl
1
iTp -V - ]S €140:
. 4],
BIPISTCI 'ETC“ -(R+D§}S+STDH) ph o’
QL e Qlcuy g2 by -1
P 0O O B,
0 I 00 0
F = » GT - TA ]
0O 0 I O -~ 5Dy,
iy
0 0 0 I 0° by
&7
al -
H' = | 2%, V = diagiV,0i.
D}
0

Hence, by Lemma 1 the inequality (20) is solvabie for
some K if and only if
Gl (FlaFrhe <0, (21)
HY AH, <O, (22)
where G and H | are the orthogonal complements of G
and #, respectively. We can choose [V Vi WIIT
and[V] VI VIIT which are orthogonal complements

of[Bf -DLS DLhQ.lad[C, €y Dyl re-
spectively, then
V, 0 TV, O
0 0 0 0
G =|0 I|,H =|Vs 0. (23)
V; 0 Ve O
Vs 0 Lo I
To simplify (21) and (22), we partition P and P~! as
_=[Y N] P":rX M] (24)
YL 7 L I

where) < X € R"™",0 <« Y ER"™" M € R, N
€ R, and * means irrelevant. Inequalities (21)
and (22) are simplified to the following LMlIs (25) and
(26) by straightforward matrix manipulations.

_ L
A{+.‘-E4T xclol B-xcTs 4, x 7
A1 1
@l Cx -I QIby QIcC, O
1
aT| BT-s7¢, X D'{}OE -8 -S5TCyy 0 |8<0,
AT cTel -cis -v 0
L X 0 0 0 -vl
A (25)
[YA+ATY+V YA, YB,-CI§ c}'@il
of ATy -V -cls T ;a-:o
2 2 ]
Biy-s'c, -s§"'¢,;, -8 pho!
4 H 1
S /S 1 Q- Cis Q_Dy -1
(26)
where
® =R+ DlﬂS + STDD,
Vv, 0 0
! v, 0
Vs 0 0
Vs 0
@l= Vg 00 ' @2= B
Ve O
0 I 0 o I
0 0 I

Theorem 3 Given matrices {, S and R with Q and
R symmetric, consider the system (13) subject to As-
sumption 1. Let [V V] VIT"and [V V5 V5]
are orthogonal complements of [87 -D%LS DLQZ]
and [C2 €33 Dy, respectively, Then there exists
an output feedback controller {16) for system (13) such
that the closed-loop system is quadratically stable and
strictly ( Q, S, R) -dissipative if there exist matrices X
> Oand ¥ > O satisfying the LMIs (25) and (26), re-
spectively,, and

f ;,];0, (27)
for some V > 0.

Proof There exists a matrix 2 > O satisfying (24) if
and only if inequality X ~ ¥~! = O holds. This inequali-
ty is equivalent to (27). The rest of the proof is men-
tioned previously. This completes the proof.

Remark 3 Let V = 7. Note that given a positive
scalar &, (25) ~ (27) are linear with respect to matrices
X and Y. Thus, the existing LMI tool'®! can be applied
to find a feasible solution if it exists.

Remark 4 Note that Theorem 3 does not present
the computation of the controllers itself, but the exis-
tence conditions of controllers is daduced. The computa-
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ton of a dissipative output feedback controller can be
camied out by the procedure proposed in [12]. Indeed,
assuming that the conditions (25) ~ (27) are satisfied
for some matrices ¥ > 0 and ¥ > O {not necessarily
unique) , a suitable controller may be found as follows:

a) Compute two full-cohmmn rank matrices M €
R"™" and N € B™"r such that

MNT = 7 - XxY. (28)
b) Find the unique solution P > 0 of the linear equation
[ -8 2] (29)

NT 0 0 M

Note that (29) is always solvable when ¥ > Oand M has
full-colurnn rank!™*!

¢) Given the matrix P, controller parameters Ay, By .
Cy and Dy can be computed as any solution of LMI {20).

Because the order of the controller depends on the di-
mension of P, from the Lemma 7.5 in [14] we can es-
tablish the following corollary.

Corollary 1 There exists a reduced-order controller
( g < n) that solves the quadratic dissipative output
feedback control problem for the system (13) if, in ad-
dition to (25) ~ (27), X and Y also satisfy the rank
constraint :

rank(f — XY) < ny. {30}

Remark 5 In the above Theorem 3, when @ = -1,
S =0, and R = ¥*1, through some slight modification,
the IMI-based H. control result of delayed systems in
'5] can be deduced. When @ = 0,5 = /, and R = 0.
i.e. in the case of strict passive control, this result com-
plements the passive control result of state feedback
based on a Riccati equation approach given by Yu et al
in [8].
4 Conclusion

In this paper, we have proposed the dissipative con-
troller design method for a class of state delayed sys-
tems. A dissipative state feedback or output feedback
controller could be obtained by using LMI Toolbox be-
cause sufficient condition for the existence of controller
is LMi form in terms of related variables. The dissipa-
tive feedback control laws gnarantee not omly the
quadragic stability of the closed-loop system but also the

strict dissipativeness. Qur design results have less con-
servativeness as it allows a better trade-off between gain
and phase performances. The proposed controller design
micthod can be easily extended to the problem of dissipa-
tive feedback controller design method for linear time-
varying time-delay systems.
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