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Abstract: In this paper. a linear matrix inequality (LMI) approach without constraints is developed to solve W- and P-
protlems, which are related to designing static output feedback (SOF)} stabilization controls for linear systems. As am applica-
tion, the SOF stabilization problem of uncertain systems is considered. Some [MI-based sufficient and necessary couditions and
dezign approaches are presented.
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1 Introduction

The design of static output feedback ( SOF) stabiliza-
tion controllers for either certain or uncertain systems is
one of the most basic and important. control problems.
Although various approaches have been proposed. the
analytical or numerical solution is still hard to get in
general. The difficulty is that designing an SOF stabi-
lization controfler is actually equivalent to solving a sct
of bilinear matrix inequalities (BMls), which are non-
convex in general, and therefore, difficult to deal
with'*2), Recently, some efforts have been made 1o i-
dentify some special cases in which the solvability of the
BMIs can be transferred into that of & set of linear matrix
inequalities (LMls) which can numerically be solved by
LMI Toolbox®!. For instance, under some sufficient
conditions, it is shown(*! that the SOF stabilization
problem is solvable if so is the so-called W-or P-prob-
lems expressed in terms LMIs and linear matrix equality
(LME) constraints. However, it is still an open prob-

lem either to find the feasible conditions of or to con-
struct a solution for a set of LMIs with an LME con-
straint

The purpose of this paper is to provide some sufficient
and necessary conditions for the feasibilities of bath W-
and P-problems, and formulate the conditions in terms
of pure IMIs (i.e., witiout LME or any other con-
straint}. In addition, an effective method for designing
SOF stabilization controllers is given, As an application
of the ideas and methods, we reconsider the SOF stabi-
lization problem of systems with polytopic uncertzinties,
and essentially generalize the results of Reference [5].

Throughout this paper, the following notations are
used. A”is the transpose of amatrix A. A > 0 (4 < 0)
means A is positive { negative) definite. And for an n x
m full column rank matrix 4 , A+ denotes an (n - m) x
n matrix with the following properties: Al A =
Otn_mixm,[A ALT] € R™"is invertible and AL A LT

= Fnmin(n-m)-
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2 LMI approaches to the W- and P-prob-
lems

Consider linear time-invariant system

{x = Az + Bu, (1)
Y = Cx,
where x € R", u € R™ and y € IR are system state, in-
put and measured output, and A € R™", B € E™"
and € € RP*" are state, input and output matrices, re-
spectively.

By SOF controls of system (1} we mean the controls
of the form u = - Ly(¢) with L an m x p constant ma-
rix. And by SOF stabilization controls of system (1)
we mean such SOF controls that stabilize the system or,
equivalently, such that A - BLC is stable.

Related to this problem is the following W- and P-
problemsm:

Definition 1 W-Problem: Given matrices A, B,
€, with € full row rank the W-problem includes find-
ing, if possible, matrices W, M, N such that

{AW + WA’ - BNC - O'N'B’ < 0,
W>0, MC = CW.

From [4], if (W, M, N) is a solution of the W-prob-
lem, then u = ~ NM~'y is an SOF stabilization controi
of system (1).

Definition 2 P-problem: Given matrices A, B, C.
with B full column rank, the P-problem includes find-
ing, if possible, matrices P, M, N such that

{PA + A'P - BNC - O'N'B’ < 0, (3)
P> 0, BM = PB.

Similarly, if (P, M, N) is a solution of the P-prob-
lem, then u = - M~"Ny is also an SOF stabilization
control of system (1).

For the convenience of citation, we introduce the fol-
lowing lernma,

Lemma 1! Suppose D € R" and £ € ™7 are
full column rank. Then there exists an n x n positive
definite matrix P such that PD = £ if and only if DTE
= E'D > 0. Furthenmore, all solutions of PD = E can
be expressed as

P = E(D"E)'E" + DLTXDL, (4)
where X € R{"-9{*-9) j¢ an arbitrary positive definite
matrix .

Theorem 1 Suppose € is full row rank. Then W-
problem is feasible if and only if there exist matrices X
>0,V > 0and N € R™"? such that

ACGVC] + CoVCFAT + ACTLTXCTL

(2)

CT-TXC™-AT - BNC - C"NTBT <0, (5)
where €y = CT(CC™)~'. Purthennore, when (5)
holds, system (1) is stabilized by SOF control law u
= - NCCTV-1y,

Proof Suppose that there exist matrices X > 0,V >
Oand N € R™” satisfying (5). Let M = V(CCT)-L.
Then we have

cC™™" = MCCT > 0, (6)
and
ACoMC + CTMTCIAT + AC™ T XC™ &
CT-TXC™ AT - BNC - CTNTBT < 0. (7)
From (6) and Lemma 1, WCT = CTMT has a positive
definite matrix solution W, which can be expressed in
the form of
W = CoMC + C™LTXC™L, (8)
svhere X is a positive definite matrix. Substituting (8)
into (7) leads to the first inequality of (2). Thus, the
W-problem is feasible.

Conversely, assume that W-problem is feasible. Lat
V = M(CC"). Then the result can be easily implied in
terms of Lemma 1.

This completes the proof.

Remark 1 The same approach as Theorem 1 can
also easily be used to discuss P-problem and similar re-
sults ¢an be obtained.

Remark 2 The presented approach can also easily
be used to design SOF stabilization controls for discrete-
time linear systems, decentralized cutput feedback con-
trol, output feedback H.. control, and other related con-
trol problems described, for instance, in [4].

3 Application to uncertain systems

In this section, by using the approaches developed in
Section 2 we consider the SOF stabilization problem of
systems with polytopic uncertainties:

2 =Ax+ Buwith (A4,B) €2 »a
{{A,B) : (A1, B}, (A, B, (9)
y = Gz,
where z € R” is the state vector, » € R™ the input and
y € R? the output.

The systemn (9) actually represents a family of muli-
input and multi-cutput systems, and is very different
from the matched uncertzin ones, which admits a nomi-
nal system and matched uncertainties, To our kmowl-
edge, the first progress on the SOF stabilization of sys-
tern (9) was made by Kar in [5], the following three


http://www.cqvip.com

No.6 An IMI Approach to Static Outpat Feedback Stabilization of Linear Systems 845

assumptions i ~ iii were imposed and the simuitancously
quadratically {SQ) stabilizable concept was adopted.

Assumption i There are B and G; such that B; =
BG,, where G; € R™*™ js nonsingular and satisfies G, +
Gl > Oforalli =1, k.

Assumption ii The number of control inputs is e-
qual to the number of measurable outputs, i.e., p =
m. The matrices B and C are of the form: B =
(0 L1".C =[C Cl, where C; € R™™ is non-
singular.

Assumption {ii The transfer function matrix €( s/,
— A,)~' B for each system is strictly minimum phase, i.
e. . all the zeros of the system lie in the open left half of
the complete plane .

Definition 3 System (9) is simultancously quadra-
tically (SQ) stabilizable via an SOF control: v = - Ly
if there exist a positive definite matrix ( and a mamix L
sach that

(A-BLCY O+ 0 A -BIC)< 0, Yi=1,k.

(10)

Suppose there are B and G, such that B; = BG. (i =
1, . k). Then it is obvious that if there exist a positive
definite matrix ¢, & nonsingular matrix L and a positive
scalar ¥ such that

AQ+ QAT (BB BED < 0, Vi=1:k,
(11)

and I = {77BTQ", (12)
then system (9) is SQ stabilized by the SOF control u

Suppose that Assamptions 1 ~ iil
hold. Then there exist a positive definite matrix ¢ and a
matrix L such that {(11) and (12) hold for some positive
y if and only if there exists a positive definite matrix W,
such that

(A - A FIW 4 Wy (A -ApF Y < 0. i=1, k.

(13)
where F = C51C;, and 4 € B and 4ip €
nem) W A
B Tm%m are parts of A; and defined by | | 4 4.,

Ay An

In order to apply the approaches developed in Section
2. we now revisit the SOF stabilization problem of sys-
tem (9), weaken the assumptions in [5]. To this end,
we introduce the following assumptions :

Assumption a There are B and (; such that B; =
BG, with G; € K™ forallf = 1,--, k.

Assumption b CB is square and nonsingular.

Obviously, Assumptions a and b are weaker than As-
sumptions i and ii, espectally in the sense that the posi-
tive definite condition on matrix G; + GT (forall i = 1,
-+, k) and the special structure condition on B and € are
niot required .

According to Lemma 1, there exists a positive definite
matrix ¢ satisfying {12) if and only if there must be
L{CB) = (CB)TLT > 0, and @ can be expressed as

0= é—yB(LCB)“IBT + (LCY-TX(LC)™L,

Let -7(LCB)™' = N. Then similar to Theorem 1, we
can show the following thecrem.

Theorem 3 Suppose the assumptions a and b hold.
Then there exist a positive definite matrix ¢, a matrix L
and a positive scalar ¥ such that (11} and (12} hold if
and only if there exist matrices X > 0, N > O and a pos-
itive scalar constant ¥such that

A;BNBT + BNB"AT + AC™TXC™ +

CTTXC™EAT - 3 7(BB" + BBY) < 0 (14)
hold fori = 1,2,--, k. Furthermore, system (9) is SQ
stabilizable by the SOF control z = - 5-( CBN)ly.

Remark 3 In addition o aandb, if G; + G} > 0
fori = 1,--,%, then we can directly, without using
(11} and {12),show that there exist matrices X > 0, ¥
> 0 and a positive scalar constant ¥ such that (14) holds
for{ = 1,2,---,k, if and only if there exists a positive
definite matrix W; such that (13) holds.

To do s0, let's partition C™L in the form [ Cy C4] =
C"™-, where C, € Rln-mIxlr-m and ¢, € Flo-mIrm,
Then

C3C;f + C4C§ = O(n-m)xms
C; €3+ CoCl = Ofnomintn-m)>s
which is equivalent to
Cq = - C4(C3IC) = - C3FT (15)

and
Collnemintnom + FTFYCE = Iipemix(neml s
(16)
respectively, where F = C51C, € R™*(*~™_ By (16)
C, is nonsingular, and by (15},
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‘ cl
C™-Txc™ = [ ]X[C - C3F"] =
_F C;r 1 3
[ Cixc, - CTxC,FT
- FCIXC, FCIXC,F']

(a7
Let W, = CI1XC,. Then it is obvious that X > 0 if and
only if W, » 0. Substituting (17) into (14), it can be
seen that {14} hold if and only if the following inequali-
ties hold:

[ W, - W, FT ]
Ai +
- FW, FW,F"+ N
W - W, Fr 0 0
[ 1 : ﬂ-iﬂ J<&
_ FW, FW,F'4+ N 27lo 6+ 6
(18)

And (18) is equivalent to (13) in the case where G; +
Gl > 0fori =1,---,k. This implies the result of Re-
mark 3.
Similar to Theorem 1, we can get the following re-
sults for uncertain systems of the form (9).
Theorem 4 Suppose C is full row rank. If there
exist matrices X > O,N > Oand ¥ € F™7 such that
ACeNCT + CoNCFAT + AC™TXC™ 4
C™'XC™ Al - BYC - C"Y'B] <0, (19
fori = 1,2,--,1, where Cy = CT(CCT)", then sys-
tem (9) is stabilized by SOF control = — YCCTN'y..
Remark 4 Compared with Theorems 2 and 3, The-
orem 4 does not require any of Assumptions i and i1 or
a,b. This essentially weakens the conditions of Theo-
rems 2 and 3. In the following section, we will give an
example to illustrate this.
4 Example
Example 1 Consider an uncertain system (97 with
(A.B) = {A;,B,},or (4;, By}, where

-2 0 2 -1 2 -3
A=l 0 0 1l,A=|0 -2 1],

Lo -1 0 1 0 -3
M1 -1

B, = —1],3;:[0},6:[011].
L 0 1

By a stmightforward calculation, it is casy to see that

ClsT— A)'B, = ‘52‘—:11

of system % = A;x + Byu is 1, in the right half of the
complex plane. And so, Assumption iii is not satisfied

. This means that the zero

and by Remark 3, the results of Theorems 2 and 3 canmot
be applied to this example. But by using Theorem 4, we
can give an SOF stabilization control & = 0.7998y.
5 Conclusion

In this paper, a pure linear matrix inequality approach
(i.e. without linear matrix equality or any other con-
straint) is developed to solve the W-and P-problems,
which are related to designing SOF stabilization controls
for linear systems. As an application of the approach,
the SOF stabilization problem of linear systems with
polytopic uncertainties is comsidered. Some LMI-based
conditions and design approaches are presented, which
not only essentially generalizes the existing results (e.g.
[51) but are also easily solved. In addition, our ap-
proach can also casily be used to design SOF stabiliza-
tion controls for discrete-time linear systems, decentral-
ized output feedback control, output feedback H. con-
trol, and other refated control problems described for in-
stance, in [4].
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