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Abstract: A linear multi-step fuzzy logical system for identifying unknown dynamiic systems described by ordinery differ-
ential equations is presented. The fuzzy gystem is constnacted according to the linear multi-step approximation method for solving
ordinary differential equations. The new fuzzy logic system can predict state variables of the unknown gystem and approximate
unknown functions in the system differential equation. The prediction and epproximation precisions of the fuzzy system are ana-

lyzed theoretically. The capabilities of the proposed fuzzy system is verified by the simulation result.
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1 Introduction

In many practical applications it is required to identify
the unknown nonlinear dynamic system described by or-
dinary differential equation {ODE) as follows

z = flx(e)), 2(0) = =z, (17
where f(x(¢)) is an unknown function. Suppose
that! !

1) State trajectory x{¢) € D c K,z € [0,T], and
D is a bounded closed domain.

2) f(x) is a continuous function on D and satisfies
the Lipschitz condition; i.e., there exists a positive
constant ¢ such that || f(x) - ) Il cclx-yl.
Yx,y© D.

3) State vector x(¢) is measurable.

Under the above assumptions, a Runge-Kutta neural
network (RKNN) to identify the unknown dynamic sys-
tem (1) has been constructed in [ 1] based on the
Runge-Kutta method for solving initial-value problems of
ODEs, However, the Runge-Kutta method is one of the

cne-step approximate methods for solving ODEs; in or-
der to improve the accuracy of approximate solutions,
the number of times to evaluate function f{ ) must be
increased in each step. Thus the computational burden is
large. Ancther method to improve accuracy of approxi-
mate solutions is that the calculation of state x,,; (Its
definition will be given in Section 2) not only depends
oo x,, but is also related to the computed x,_y, %2,
directly, and function () is only calculated once in
each step. This kind of methods is called muolti-step
method. Denote f, = f{x,) , if the solving formula of
a multi-step method consists of a linear combination of
Fosfaot s+, this multi-step method is called linear mul-
ti-step method. In addition, it is well known that fuzzy
identifiers have advantage over neural network identifiers
in many respects. So the purpose of this paper is to con-
struct an adaptive fuzzy logic system ( FLS )—linear
multi-step method fuzzy logic system (LMFLS). This
fuzzy system can not only predict the fubure state values
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by training its parameters based on the previously mea-
sured states, but also approximate the unknown function
f{x) describing the dynamic system.
2 Introduction to linear multi-step method
The main content gbout the linear muiti-step method is
summarized as follows?+4
Introduce a sequence of points ¢, = £,_; + & = g +
nh.n = 0,1, ; where A is the step size in the se-
quence. Define x(,) to be the exact solution x(¢) of
(1} at point £, and x,, to be an approximation of x{t,)} ,
a general form of the livear &-step method is

£ [

Sty = S8y n = 0L, (D)
1= J=

where a; and {3, are real constants, a; 5= 0 (usually set a;
=1}, lagi+1fi| > 0. In order to compute x,,, , from
(2), k starting values must be known. These values can
be obtained by {1} and other means, e.g. , with the aid
of a one-step method, After the starting values are ob-
tained, x;,%,q, " can be calculated in order. A linear
k -step method is called an implicit method if 8, -« 0;
and it is called an explicit method if 8; = 0. The above
method becomes a one-step method when & = 1 and it is
a multi-step method if £ = 2 . Denole

feg = ap + ay + " + @i,

vhayp - (Bo+ B+ + B

cp = ay + 2ag +

'+ k"ak) -

;l'*(al + 2%, +

oA+ 27 e+ ),

g = 2,3,

{(3)
Definition 1 A livear multi-step method is called a
method of order p if cp=¢; =" =¢, =0and ¢, # 0.
Definition 2 The local truncation ermor of a linear
multi-step method at x,, ; is defined as
k
Tosr = Z:ajxnﬁ - Z;@fmj-
I= J=
The first term of the Taylor expansion of T, in powers
of 4 is called main local truncation emmor or main term of
a local tnmcation error.
It can be proven that the main terrn of a local trunca-

ton error is cFHh"”x(*’*”(z,,) , and ¢,y is called error
constant.

In order that the result obtained by approximate for-
mula (2) is a reasonable approximation of equation (1),
(2) should satisfy the following consistence condition,

Definition 3 The linear multi-step method is said
to be consistent { with respect to OED (1) ), if for each
f satisfy assumption 2} its local truncation emror T, sat-
isfies

iﬂ%f,l“ = 0,1 = ty+nh.

It can be shown that a consistent linear multi-step
method has at least order 1. Conversely, it is obvious
that a linear multi-step method of onder g{g = 1) is
consistent.

Lete, = x, - x(1,) denote the global truncation error
of a linear multi-step method. For a given initia! value
xp and additional initial values x;, x5, "
pect

lel < nlh), i=01,k- 1,Limp(4) = 0.

Definition 4 The linear multi-step method is said

to be convergent if

y X112 WE E€X-

}li_r_r-}x,, = x(t), £ = 1y + nh,
for all0 < ¢ < T, all fimctions f satisfy assumption 2},
and all initial values x;(i = 0,1, ", & ~ 1) satisfy the
above condition.
Theorem 1 A convergent linear multi-seep method
is also consistent.
Definition 5§ Fortheljncarmull:i-stepmeﬂ)odu)

a polynomial p{A) = /_,GJA"ISIDIIOdUOBd If all the

routsofp(A}areonumtmmumfcrenceormumtdlsk,
and the roots on init chcumference are all sisuple roots,
then it is said that method {2} satisfies the root condi-
ton.

Theorem 2 Suppose that a linear rulti-step method
{(2) is consistent, then the method is convergent if and
only if the root condition holds.

Definition 6 The linear multi-step method (2) is
said to be stable for initial-value problems if for all f sat-
isfying assumption 2) there exist constants € and kg such
that when 0 < A < hg. any two solutions x,, and %, of

(2) satisfy
uﬂ:’fr””"_""" ¢ max Iz - %1,

where z; and £,(f = 0,1,--*, % — 1) are initial values of
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%, and %, , respectively.

Theorem 3 A linear multi-step method (2) is sta-
ble for mitial-valve problems if and only if the root con-
dition holds .

In summary, for a linear multi-step method of onder
g(g = 1) the root conditicn is a necessary and sufficient
condition that it is convergent and stable.

3 Linear multi-step fuzzy logic systems

With the above preliminary a linear multi-step fuzzy
logic system can be constructed, and its structure expres-
sion is

y(i+ k) =

- agy(i) - aly(i +1) -

-yl e k- 1)+

RBoFy(i)) + BiFy(i+ D) 4 4

B Fly(i + & -1))], (4)
where k = 2,v(i) = v(ih)iq, and (i = 1,2,-,%
— 1) satisfy the conditions for comsistence, convergence
and stability; fuzzy logical system F,is an approxima-
tion of f. The structure of LMFLS can also be illustrated
by Fig.1:

Hrtk-1)

—e L

Fig. I The structure of a linear multi-step

fuzzy logical system

Theorem 4 (Approximation and Convergence The-
orem) For an approximate solation x;.; of ODE (1) ob-
tained by a linear multi-step method

Lk =

—agX, — Q@1 Fiyl — T~ Ty 4

h[ﬁaf(xi) + f f(xm) + 4 ﬂk—lf(zu-k-l)].

(5)

there exists an LMFLS described by (4) such that its
outputs v( i + &) satisfy

limll y(i + &) -~ mepi | = 0,0 =0,1,2,.

If the linear multi-step method (5) satisfies the root
condition and its order 31, then the LMFLS is conver-
gent.

Proof Among the k starting values of (4), except x,
obtained by (1), the others are obtained by a one-step
method FLS (e.g., y(i + 1) = (i) + hFA5(i)).
Since the proof that starting values y( i + 1) can approxi-
mate x;,,(i = 0,1,*,k — 2) is similar to the proof
that y{i + k) cbtained by LMFLS can approximate
%;,5(i = 0,1,--), the starting values of (5) can be re-
garded as those of (4).

Forall e > 0, since f is continuous on the bounded

dosed region D, from [5], forsos.‘T{ﬁ—
EXS 1B

=0

, there

exists a FLS f such that

| Alx(e)) - fm(e) I < g, 5(2) € D.
Set F; = f, and construct an LMFLS described by (4).
Fori = 0, take d = Ve, when A < &, one has
ly(&) - =l =
| & [Bol Flmg) — flxg)) + PrlFlxy) - flx)) +
i Ba(Flmn) - fao N <
RLL By 1ol Frlog)—fag) | +1 By 1+1 Fr(z)—f) | +
il B U Flmy) - Al ) 1] <

k-1

hheg>, | B 1< €.

i=0

The conclusion holds for ¢ = 0.
Suppose that the conclusion holds for i < n - 1,

ie., forels_"ﬂ-g-—*-,whmhissufﬁcientsmall,

f‘.’E | & |
=0

N y(i+ &) - %[l < €10i=0,1,7,7—1. Then,
for: = n, cne has

| yln+ %) - %l =

[ aply(n) — %) + ay(y{n + 1) = mp1) + - +
a{y(m + k-1) - xappn) +

R Bo(Fy(n)) - f(x,) +

BilFy(n 1)) = floger)) 4+

Gl Fly(n + £~ 1)) - flapi)]ll <

keli e lge(h—>0).
Thisfl;;ﬁmhatumconclusionholdsfori = n.Th
first conclusion is proved through induction.

If {5) satisfies the root condition and its order p = 1,
then limsx;., ;. = x(t),t = t,,. Also,
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by e k) - 2(8) | =

| y(i+ k) = e + 2i0s - 2(8) || <

I yGi+ &) = mia b+ B owgn - 5Ce) |
Therefore, lim | y(i + k) - 2() [} = 0,2 = tss
i.e., y(i + k) is convergent. This ends the proof of
Theorem 4.

'This theorem shows that when a system model is un-
known, as long as k is sufficiently small, the iterative
sequence produced by an LMFLS will tend to the ap-
proximate solution obtained by a lincar multi-step
method for the accurate model, and the LMFLS con-
structed based on a convergent linear multi-step method
is also convergent.

In the following, we quantitatively analyze the ap-
proximate accuracy that the FLS approximates unknown
function f(x) in (1) while an IMFLS predicts state
variables of (1). Here only IMFLS s of order 2 are
considered .

Theorem 5 Suppose that f{x) and F{x) defined
on D have continuous partial derivatives of order 3. The
state trajectory of system (1) is predicted by an ILMFLS
of order 2;

y(i + k) =

—apx(i) —aali+1) - mgga(i + k=1) +
RUBoF(x(i)) + BrFx(i + 1)) + - 4

Box Fx(i + & ~10)].

Fily(i+k)-2(i+ k)| ~ OCR?), then the accu-
racy of ¥y approximating f is

A () 4 (2 (D))= Fa (D) 4 f (2 GO || = O(RD),
where

- G422+ + (b - DBy
T Bo4Bitw B

Bo+t B4+ By =0, k=l
Proof Denote the Jacobi matrices of f and F, by Jr
and Jr, respectively, the state of System (1) at time (i
+ k) k can be expressed as
2{i+ k) =

x(0) + 2 Ly » kb 3 Leo(kR)? + O(RY) =

£ + G + B L) o)) 4 00,
The output of the LMFLS at time (i + k) A can be writ-
ten in the following form

)"(L + k) =

~apx(i) - a[x0i) + RF(x(E)) +
%zlf':u)f(x(i)) + O] =~ -

ap-tLx(i) + (b - DAA2(0)) +
G 1PR G Ra(e)) + 0] +

RGEAx(i)) + BlF () + Wp 1 (5(80)]) +
et Foal Fr(x ()4 (b - DAdp Lpfix() ]+ O(R).
Denote

51 a|+2a2+"'+.‘mk,

$2 é—(al + 220 + 0+ Klayg),

where a; = 1. By the definition of onder,
Bo+ B+ + B = 51,
Bi+ 28+ + By = 50
Thus
| 2(i+ &) -G+ )Y =
hsy || fQx(i)) - Fe(x(i)) + th Jr infCe(i)) -
ridp Loy flxCi |+ O(R)e.
Hence
B A (i )+ flx () ))— Fplali )4 A (2(i0)) || = OCH).
This completes proof of the theorem.
The above theorem implies that if || j—':" and

dF,
I Tf Il do not vary rapidly and k is sufficiently small,
%

while an LMFLS predicts state variables, the FLS in the
LMFLS can also approximate the unknown function on
the rightside of (1), but its approximate accuray is
lower than that of the LMFLS predicting state variables.

In Theorem 5, the condition 8o + B + *** + Bi_1 % 0,
k = 2is not stict, since there exist many linear multi-
step methods which satisfy this condition and are consis-
tent, convergent and stable. For example, the linear
two-step method of order 2 given by the famovs Adams
forrmula

fast = Fner + 2t - f2)
does satisfy 8y + 8, s 0. In fact, it can be proved that
providing
ag>-1,a; <3, -3 <<,
Bo+pPrL<00r0 < B+ f <3,
linear two-step methods of order 2 satisfy §o + & = 0
and are consistent, convergent and stable.
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4 Parameter learning algorithms of LM-
FLS’s
Suppose that an LMFLS has been constructed and at
each time step the sampling data
x(itng) = x(ih;xg), i = O,"'.[IT] =L+ k-~1

are obtained. Our task is to develop a learning algorithm
to adjust parameters of the LMFLS based on the data,
such that the constructed LMFLS can approximate the
solution of ODE (1). With the singleton fuzzifier, the
product rale of inference, the centre-average defuzzifier
and the Gaussian membership functions, the output of
FLS is

Fi(a) = Fe(x38) =

(Fp(238), Fp(2318), 0, Fy (x;80)7,
where

8 = (81,62,,6,)7,

6, = (61,62, 6¥)". = 1,2, n;

FJ: = 3,'Tp(x),

p(x) = (py(2),pala), -, pu(2))7,

Thus (4) can be written as
y(i+ k) =
(yi{i + &), 92(i 4+ &),y . (i + kD)7 =
—apr(i) —ay¥(i 4+ 1) = m g yli+ E=-1) +
R(Bo(8Tp(y (), 6Tp(x(i}), =, 6% p(y (i) )} 4+
Bt 6fply(i + k- 1)), 0p(y(i + & - 1)),
e 8Ty (i + k= D). (6)

In the following, we will give two types of parameter
learning algorithms for LMFLS’s. The first one is a
back propagation ( BP) algorithm. Define the emor at
time step i to be

e= Ty k) -sGem 2 (D

The following leaming algorithm can be used to adjust
parameter &, :
8(m +1) = 8(m) - a% -

8(m} - ah(yli + k) - x{i + &) -

IF (y(i);6) IF(y(i+k-1);6)
08 o SOAE)

}

*

where j = 1,2, Mim =0,1,2,-;0<ca< lisa
leamning constant, and
3F]5(y(i+s);8,-)

= (plyli + 1), pu{y(i + s 1),

(8)

355.
where s = 0,1, %k - 1.
The second one is a least-square leaming algorithm,
Dencte the total error between outputs of the LMFLS
and the training trajectories by

e=1 2 Hyie ) -a(ie DL (9)

From (6),

yli+kY+agx(id+aya(i+])+ " +ap x{i+k-1)=

COTR Bop(xCi)) + » + Beypla(i+ k- 10)],,

Th[Bop(x(i)) + 4+ Bopla(i + k - 1)}]).

Define
ACx(i),2(i + D, wli 4 k- 1)) = 44D s
A = Boplx(i)) + + Buoip(a(i + k- 1)),
i=12,~,n,

Thus,

yli+ k)= AN2(i),x(i+1),, 2{i+k-1))6-
aoxli)—aix{i+) = —ay_;x{i+k-1),

Substituting it into (9), it can be seen that the mini-

mization of (9) is equivalent to finding the least square

solution of the following equations:

[ AT(x(0),x(1), . x{k - 1))

:Hf’l:l
LAT(x(L - 1),2(L),,2(j -2))iL 4,
[ agx(0) + - + ap_1x{k - 1) + (k) }

Lag2(L = 1) + = + ap_1 2(j - 1) + x(})
(10)
wherej = L+ & - 1.

Now we have already provided two parameter learning
algorithms for LMFLS ' s: the BP leaming algorithm and
the least square algorithm. The former can adjust parame-
ters of LMFLS " s on-line, but easily phinges inmo a local
extreme vale. The later can only adjust parameters of
LMFLS s off-line, but the global optinum of (9) may be
reached by choosing a proper method for solving (10).
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5 Example and simulation
Consider the following system

Fa-v1-3% y(0) =0, y(0) =1, 0g ! < 16.

Assume that the structure of this system is unknown but

its position y and velocity y at each time step i can be

measured. Let

N = j'l X2 = Y, x(‘) = (-‘l!xl)Ts

Flx(0)) = (Ale(e)), fls())T = (-1 - &, 2T,
then the system becomes
2 = fla(e)), «(0) = (1,0)W.

Take step sizes & =0.05, 0,01, 0.005, respectively,
Using the obtained states as training data, we apply the
BP dlgonthm to adjust the parameters of an LMFLS until

= 8 . Thus we obtain an IMFLS that can approximate
the given systemn. And then we test the prediction capac-
ity of the obtained IMFLS fromt = Oto ¢t = 16 . The
simulation results are given in Fig.2.

1S
(8) The curve of errors between y and corresponding
outputs of the LMFLS

0.05

0.023

0

-3 Q025
-~ 005

- 0.075

=01

[
ib) The curve of errors between ¥ and corresponding
outputs of the LMFLS
Fig.2 The simulation resufts

In Fig. 2 curves 1,2 and 3 denote the emor curves
with A =0.05, 0.01 apd 0.005, respectively. The
mean value of absolule emors for tracking y are 0.0335,
0.0068, 0.0038, respectively; The mean value of abso-
lute errors for tracking y are 0.0322, 0.0064, 0.0028,
mespectively. From Fig. 2, we see that the shorter the
step size b is, the smaller the state wacking errors of the
LMFLS are.

6 Conclusion

In this paper a new LMFLS is presented based on the
linear multi-step methods. It is proved that the LMFLS
can predict states of an unkaown system and simultane-
ously approximate the unknown function determining the
system. Since multi-step methods make full use of pre-
vious information to reduce emors, but one-step methods
need W increase compute quantity in each step for this
purpose. Generally, because achieving the same accura-
cy the computational quantity of a multi-step method is
less than that of a one-step method, the proposed TM-
FLS has lower computing bunden.
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