Article ID: 1000 - 8152(2001)06 - 0867 - 04

A Class of Nonlinear H_{∞} Controller Design via State Feedback for Disturbance Attenuation *

LI Xi, TANG Xiaoqi, ZHOU Yunfei and CHEN Jihong

(National Engineering & Technology Research Center of Numerical Control · Wuhan, 430074, P. R. China)

Abstract: A class of disturbance attenuation approach is proposed for affine nonlinear systems, which yields the local stable systems of these problems via state feedback standard H_{∞} control for unknown finite bounded periodical disturbance. The method for these problems is showed by using dissipation inequality, and the parameters of controller are derived.

Key words: nonlinear system; H_a-controller; state feedback; disturbance attenuation

Document code: A

一类抑制扰动的 H。状态反馈非线性控制器设计

李 曦 唐小琦 周云飞 陈吉红

(国家数控系统工程技术研究中心:武汉,430074)

搞要: 研究了一类状态可侧仿射非线性系统的扰动抑制问题,针对局部新近稳定的非线性系统受到未知有界的周期性扰动,以 H。状态反馈标准控制方法为基础,给出这类问题的设计方法,得到了控制器的参数化描述.

关键词:非线性系统; H。控制器: 状态反馈: 干扰抑制

1 Introduction

A popular method to solve the standard H_m control problem is the state feedback approached and developed in [1]. Recently, attention was extended to H_∞ robust performance problem for nonlinear systems and there has been considerable progress in the design of robust H_m controller for nonlinear systems. The H_∞ optimal control or sub-optimal control was developed by several authors [1-10]. The discussion of these problems was almost focused on output-feedback or measurement feed $back^{[2-4]}$ and state-feedback^[1,5,6]. Specially, [3] shows the concept of disturbance attenuation in the sense of L_2 norms and gives a set of sufficient condition for the problem of local disturbance attenuation with internal stability in a nonlinear affine system via neasurement feedback, that is when the set of measured variables is just a function of the state of plant and of the disturbance input (also see [2]), and in terms of the solution of a pair of Hamilton-Jacobi inequality, which is the nonlinear version of the Riccati inequality considered in analysis of the H_∞ (sub) optimal control problem for linear systems. [2] presents a necessary condition for the existence of a solution to the problem of (local) disturbance attenuation in the case of measurement feedback, and yields the construction of a feedback law for disturbance attenuation. The necessity of these sufficient conditions has also been discussed in [4] and [9]. [10] discuses the H_{∞} -controller design problem in case of decentralized large scale nonlinear systems by using the Hamilton-Jacobi inequality approach via measurement feedback. The solution to the output feedback H_{∞} control for nonlinear systems was obtained in [4] and [9]. The state feedback H_{∞} control has also been investigated in [5] and [6].

More recent contributions to this area of research are the works [6] and [10]. In particular, [6] presents the problem of H_{∞} control for nonlinear systems with a known Lyapunov function, and using dissipation inequality a state feedback controller is designed to grant that the closed-loop system is globally asymptotically stable. The most advantage of this method is not rely on solution of any HIIE's (Hamilton-Jacobi-Isaacs equation).

^{*} Foundation item: supported by National Nature Science Foundation of China (59975033). Received date: 2000-01-18; Revised date: 2001-09-13.

In this paper we addressed, along the research line of [6] and [10], nonlinear H_{∞} -control problem for periodic disturbance attenuation (or, periodical nonlinear H_{∞} -control problem PNHP). Using the notion of dissipativeness and Lyapunov function, some disturbance attenuation for the solution of H_{∞} control problem are obtained and the suitable state controller is constructed explicitly.

2 Notation

Definition 2.1 If the signal w(t) satisfying

$$w(t) = a_0/2 + \sum_{i=1}^{\infty} (a_i \cos i\omega t + b_i \sin i\omega t) =$$

$$a_0/2 + \sum_{i=1}^{N} (a_i \cos i\omega t + b_i \sin i\omega t) + R(i\omega t) \approx$$

$$a_0/2 + \sum_{i=1}^{N} (a_i \cos i\omega t + b_i \sin i\omega t), \qquad (1$$

where $\lim_{t\to\infty} R(i\omega t) = 0$, we call w(t) is a periodical signal

For all internal stable systems, the system gain for $w(t) = \sum_{i=0}^{l} w_i(t)$ as input signal can be approximately expressed as follows^[10]

$$\gamma_{\max} = \max_{t > 0} \sqrt{\frac{\int_{0}^{t} [z_{1}^{2}(\tau) + \cdots z_{1}^{2}(\tau)] d\tau}{\int_{0}^{t} [w_{0}^{2}(\tau) + \cdots w_{1}^{2}(\tau)] d\tau}}, \quad (2)$$

where z_i ($i = 0, 1, \dots, l$) are the output of disturbance. Consider nonlinear system Σ

$$\Sigma_{i} \dot{x} = f(x) + \sum_{i=0}^{l} g_{w_{i}}(x) w_{i} + g(x) u, \qquad (3)$$

$$z = h(x) + d(x)u, (4)$$

where $x \in \mathbb{R}^n$ stands for the state, $v \in \mathbb{R}^m$ is the local control input, $w_i \in \mathbb{R}^r$ ($i = 0, \dots, l$) as Definition 2.1, are the square-integrable exogenous disturbances, $z \in \mathbb{R}^q$ is an output to be regulated, f(x), g(x) are smooth vector fields in \mathbb{R}^n and \mathbb{R}^m . $g_{w_i}(x)$ is a matrix for weight of exogenous disturbances, h(x), d(x) are all known smooth mapping vector functions of appropriate dimensions, and satisfying f(0) = 0, h(0) = 0. For convenience, we denote $g_{w_i}(x) = [g_{w_0}, \dots, g_{w_i}], w = [w_0^T, \dots, w_I^T]^T$, such that Σ can be written as

$$\Sigma; \ \dot{\mathbf{x}} = f(\mathbf{x}) + g_w(\mathbf{x})\mathbf{w} + g(\mathbf{x})\mathbf{u}, \tag{5}$$

$$z = h(x) + d(x)u, (6)$$

Definition 2.2 Suppose for the initial state of sys-

tem Σ is $x_0 = 0$ and a neighborhood of $X \subseteq \mathbb{R}^n$ of x_0 , for any $\hat{x} \in X$; there exist a t_1 and a w(t) such that $\hat{x} = \Phi$ $(t_1, 0, x, w(t))$. If this happens, then called that the Σ is state reachable at x_0 . Where the function $\Phi(t_1, 0, x, w(t))$ is the solution of equation $\dot{x} = f(x) + g_w(x)w + g(x)u$ at $x_0 = 0$ and u = 0.

Definition 2.3 The pair $\{f, h\}$ is said to be locally detectable if there exists a neighborhood X of the point x = 0 such that, if x(t) is any integral curve of $\dot{x} = f(x)$ satisfying f(0) = 0, h(0) = 0.

The PNHP to be addressed in this paper is as follows. Given a scalar $\gamma \geqslant \gamma_{\max} > 0$, design a locally smooth nonlinear state feedback control game $u = \alpha(x)$ for Σ , with $\alpha(0) = 0$, and such that:

- The origin is locally asymptotically stable equilibrium point of the closed-loop system;
- 2) the L_2 -gain of the closed-loop system from w to z is not larger than γ , i.e., satisfies the following inequality

$$\int_0^t z^{\mathsf{T}}(\tau) z^{\mathsf{T}}(\tau) \mathrm{d}\tau \leqslant \gamma^2 \int_0^t w^{\mathsf{T}}(\tau) w^{\mathsf{T}}(\tau) \mathrm{d}\tau, \text{ for all } t \geqslant 0.$$

3 Main result

Lemma 3.1 If system Σ at $x_0 = 0$ is state reachable, and there exists a differentiable smooth positive definite matrix function V(x), satisfying V(0) = 0, so $(\partial V/\partial x)f(x) + h^{T}(x)h(x) +$

$$(\partial V/\partial x)g_{w}(x)g_{w}^{T}(x)(\partial V/\partial x)^{T}/(4\gamma^{2}) \leq 0. \quad (7)$$

Proof Since the L_2 -gain of the system is less than or equal to γ and the system is reachable, for any $T_1 \geqslant \iota_0$, we have

$$0 \leqslant \int_{t_0}^{T_1} (\gamma^2 w^{\mathsf{T}}(\tau) w(\tau) - z^{\mathsf{T}}(\tau) z(\tau)) d\tau < \infty.$$
(8)

That is

$$\int_{t_0}^{0} (\gamma^2 w^{\mathrm{T}}(\tau) w(\tau) - z^{\mathrm{T}}(\tau) z(\tau)) d\tau \geqslant$$

$$- \int_{0}^{T_1} (\gamma^2 w^{\mathrm{T}}(\tau) w(\tau) - z^{\mathrm{T}}(\tau) z(\tau)) d\tau. \quad (9)$$

We order

$$V(x) = -\lim_{T_1 \to \infty} \inf_{w \in L_2[0, T_1]} \int_0^{T_1} (\gamma^2 w^{\mathsf{T}}(\tau) w(\tau) - z^{\mathsf{T}}(\tau) z(\tau)) d\tau,$$
(10)

consider the nonlinear system is reachable at $x_0 = 0$, when $w(t) \equiv 0$, the $x(t) = x_0$ is obviously the solution

(17)

of $z(t) \equiv 0$, so $V(x) \geqslant 0$.

Obviously

$$V(x) \leqslant \int_{t_0}^{0} (\gamma^2 w^{\mathrm{T}}(\tau) w(\tau) - z^{\mathrm{T}}(\tau) z(\tau)) \mathrm{d}\tau < \infty,$$
(11)

when $x_0 = 0$, V(0) = 0.

Consider the optimal problem for system Σ

$$W(x) = \inf_{w(\tau)} \int_0^{\infty} (\gamma^2 w^{\mathrm{T}}(\tau) w(\tau) - z^{\mathrm{T}}(\tau) z(\tau)) d\tau.$$
(12)

It can be known from optimal control theory that W(x(t),t) satisfies

$$\frac{\partial \mathbf{W}}{\partial \mathbf{x}} = -\min_{\mathbf{w}(\mathbf{z})} | \mathbf{y}^2 \mathbf{w}^{\mathrm{T}} \mathbf{w} - \mathbf{z}^{\mathrm{T}} \mathbf{z} + \frac{\partial \mathbf{W}}{\partial \mathbf{x}} (f(\mathbf{x}) + \mathbf{g}_{\mathbf{w}}(\mathbf{x}) \mathbf{w}) |.$$
(13)

It also can be said that W(x(t),t) satisfies

$$\frac{\partial W}{\partial x} = -\min_{w(t)} |y^2 w^T w - z^T z + \frac{\partial W}{\partial x} (f(x) + g_w(x) w)|.$$
(14)

Because, W(x) = -V(x), that is $\frac{\partial W}{\partial x} = -\frac{\partial V}{\partial x}$, and $\frac{\partial W}{\partial t} = 0$, so that

$$\begin{aligned}
&-\min_{w(t)} \{\gamma^{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} - \mathbf{z}^{\mathrm{T}} \mathbf{z} + \frac{\partial \mathbf{W}}{\partial \mathbf{x}} (f(\mathbf{x}) + \mathbf{g}_{w}(\mathbf{x}) \mathbf{w})\} = \\
&-\min_{w(t)} \{\gamma^{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} - \mathbf{z}^{\mathrm{T}} \mathbf{z} - (\frac{\partial \mathbf{V}}{\partial \mathbf{x}}) f(\mathbf{x}) - (\frac{\partial \mathbf{V}}{\partial \mathbf{x}}) \mathbf{g}_{w}(\mathbf{x}) \mathbf{w}\} = \\
&-\min_{w(t)} \{\gamma^{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} - \mathbf{h}^{\mathrm{T}} (\mathbf{x}) \mathbf{h}(\mathbf{x}) - \frac{\partial \mathbf{V}}{\partial \mathbf{x}} f(\mathbf{x}) - \\
&\frac{1}{4\gamma^{2}} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \mathbf{g}_{w}(\mathbf{x}) \mathbf{g}_{w}^{\mathrm{T}} (\mathbf{x}) (\frac{\partial \mathbf{V}}{\partial \mathbf{x}})^{\mathrm{T}} - \\
&\frac{1}{4\gamma^{2}} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \mathbf{g}_{w}(\mathbf{x}) \mathbf{g}_{w}^{\mathrm{T}} (\mathbf{x}) (\frac{\partial \mathbf{V}}{\partial \mathbf{x}})^{\mathrm{T}} - \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \mathbf{g}_{w}(\mathbf{x}) \mathbf{w}\} = \\
&\min_{w(t)} \| \gamma \mathbf{w} - \frac{1}{2\gamma} \mathbf{g}_{w}^{\mathrm{T}} (\mathbf{x}) (\frac{\partial \mathbf{V}}{\partial \mathbf{x}})^{\mathrm{T}} \|^{2} + [\frac{\partial \mathbf{V}}{\partial \mathbf{x}} f(\mathbf{x}) + \\
&\mathbf{h}^{\mathrm{T}} (\mathbf{x}) \mathbf{h}(\mathbf{x}) + \frac{1}{4\gamma^{2}} \frac{\partial \mathbf{V}}{\partial \mathbf{x}} \mathbf{g}_{w}(\mathbf{x}) \mathbf{g}_{w}^{\mathrm{T}} (\mathbf{x}) (\frac{\partial \mathbf{V}}{\partial \mathbf{x}})^{\mathrm{T}}] \} = 0.\end{aligned}$$

We denote

$$P(x) = \frac{\partial V}{\partial x} f(x) + h^{T}(x) h(x) + \frac{1}{A \chi^{2}} \frac{\partial V}{\partial x} g_{w}(x) g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T}. \quad (15)$$

Obviously

$$\| \gamma w - \frac{1}{2\gamma} g_w^{\mathrm{T}}(x) (\frac{\partial V}{\partial x})^{\mathrm{T}} \|^2 \geq 0,$$

so that

$$\begin{split} P(x) &= \frac{\partial V}{\partial x} f(x) + h^{\mathrm{T}}(x) h(x) + \\ &\frac{1}{4\gamma^2} \frac{\partial V}{\partial x} g_w(x) g_w^{\mathrm{T}}(x) (\frac{\partial V}{\partial x})^{\mathrm{T}} \leq 0. \end{split}$$

O.E.D.

Lemma 3.2 Suppose that the system Σ is state reachable at $x_0 = 0$, if there exist a neighborhood $X \subseteq \mathbb{R}^n$ and a differentiable smooth positive definite matrix function V(x) for $x(0) \in X$, and suppose system Σ satisfies the following hypothesis.

Assumption 1 There exists a smooth function $V(x) \ge 0$ in the neighborhood of X such that $\frac{\partial V}{\partial x} \le 0$.

Assumption 2 Matrix function d(x) is of full-column rank for any $x \in \mathbb{R}^n$.

Assumption 3 Function V(x) is a diagonal matrix. Then given any positive scalar $\gamma \geqslant \gamma_{\max} > 0$, the control law

$$u = -[d^{T}(x)d(x)]^{-1}[g^{T}(x)(\partial V/\partial x)^{T}/2 + d^{T}(x)h(x)]$$
(16)

solves the H_∞ control problem for this system.

Proof For convinece we denote $Q(x) = [d^{T}(x)d(x)]^{-1}$, evidently Q(x) > 0.

We know from Assumption 1, the dissipation inequality of system satisfies

$$V(x(t_1)) - V(x(t_0)) + \int_{t_0}^{t_1} L(x(\tau), w(\tau), u(\tau)) d\tau \le 0 \text{ for any } t_1 \ge t_0,$$
where
$$L(x, w, u) = \|h(x) + d(x)u\|^2 - \gamma^2 \|w\|^2,$$

$$H(x, w, u) =$$

$$(\frac{\partial V}{\partial x})\dot{x} + L(x, w, u) =$$

$$\frac{\partial V}{\partial x}(f(x) + g_w(x)w + g(x)u) +$$

$$(h(x) + d(x)u)^{T}(h(x) + d(x)u) - \gamma^{2}w^{T}w =$$

$$\frac{\partial V}{\partial x}f(x) + \frac{\partial V}{\partial x}g(x) + \frac{\partial V}{\partial x}g(x)u(x) +$$

$$h^{T}(x)h(x) + u^{T}(x)d^{T}(x)h(x) +$$

$$h^{T}(x)d(x)u(x) +$$

$$u^{T}(x)d^{T}(x)d(x)u(x) - \gamma^{2}w^{T}w.$$

From Assumption 1, the system satisfies the condition of saddle point, such that for w and u from $\partial H/\partial w = 0$, $\partial H/\partial u = 0$ we can get the saddle point of H(x, w, u).

$$w_{p} = \frac{1}{2\gamma^{2}} g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T}, \qquad (18)$$

$$u_{p} = -(d^{T}(x)d(x))^{-1} \cdot \frac{1}{2} g^{T}(x) (\frac{\partial V}{\partial x})^{T} +$$

$$d^{T}(x)h(x)). \qquad (19)$$
Consider (18) and (19), we obtain
$$H(x, w_{p}, u_{p}) =$$

$$(\frac{\partial V}{\partial x}) \dot{x} + L(x, w_{p}, u_{p}) =$$

$$\frac{\partial V}{\partial x} [f(x) + \frac{1}{2\gamma^{2}} g_{w}(x) g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$[d^{T}(x)d(x)]^{-1} g(x) d^{T}(x)h(x)] + h^{T}(x)h(x) -$$

$$\frac{1}{4\gamma^{2}} (\frac{\partial V}{\partial x}) g_{w}(x) g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$[d^{T}(x)d(x)]^{-1} [g^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$\frac{1}{2} [d^{T}(x)d(x)]^{-1} [g^{T}(x) (\frac{\partial V}{\partial x})^{T} +$$

$$d^{T}(x)h(x)]^{T} d^{T}(x)h(x) -$$

$$\frac{1}{2} [d^{T}(x)d(x)]^{-1} d^{T}(x)h(x) [g^{T}(x) (\frac{\partial V}{\partial x})^{T} +$$

$$d^{T}(x)h(x)]^{T} \cdot [\frac{1}{2} g^{T}(x) (\frac{\partial V}{\partial x})^{T} + d^{T}(x)h(x)] =$$

$$\frac{\partial V}{\partial x} f(x) + h^{T}(x)h(x) +$$

$$\frac{1}{4\gamma^{2}} \frac{\partial V}{\partial x} g_{w}(x) g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$Q(x) \frac{\partial V}{\partial x} g(x) g^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$Q(x) \frac{\partial V}{\partial x} g(x) g^{T}(x) (\frac{\partial V}{\partial x})^{T} -$$

$$Q(x) \frac{\partial V}{\partial x} g(x) d^{T}(x)h(x) =$$

$$P(x) - Q(x) \parallel \frac{1}{2} \frac{\partial V}{\partial x} g(x) + d^{T}(x)h(x) \parallel^{2}.$$
Since
$$Q(x) = [d^{T}(x)d(x)]^{-1} > 0, \text{ so that}$$

$$Q(x) \parallel \frac{1}{2} \frac{\partial V}{\partial x} g(x) + d^{T}(x)h(x) \parallel^{2} \ge 0.$$

$$H(x, w_{p}, u_{p}) \le \frac{\partial V}{\partial x} f(x) + h^{T}(x)h(x) +$$

$$\frac{1}{4\gamma^{2}} \frac{\partial V}{\partial x} g_{w}(x) g_{w}^{T}(x) (\frac{\partial V}{\partial x})^{T}.$$

From Lemma 3.1 we can obtain

$$H(x, w_p, u_p) \leq 0.$$

Q.E.D.

4 Conclusion

This paper has considered the problem of nonlinear H_{∞} -control problem for periodic disturbance attenuation. We have developed a methodology for designing nonlinear state feedback controllers that ensure local stability and a prescribed bound for the closed-loop system. The proposed design methodology involves the explicit construction of the control law on a Lyapunov function of system, which avoids the need for solving HJIE' s. There is real value in the work of this paper.

References

- Van der Schaft A J. A state-space approach to nonlinear H_∞ control
 Systems & Control Letters, 1992, 16(1):1-8
- [2] Isidori A and Kang W. H., control via measurement feedback for general nonlinear systems [J]. IEEE Trans. Automat. Contr., 1995,40(3):466-472
- [3] Isidori A and Kang W. Disturbance attenuation and H_∞-control via measurement feedback in nonlinear systems [J]. IEEE Trans. Automat. Contr., 1992,37(9):1283 - 1293
- [4] Ball J A, Helton J W and Walker M L. H_m control for nonlinear systems with output feedback [J]. IEEE Trans. Automat. Contr., 1993,38(4):546-558
- [5] Shen T and Tamura K. Robust H_a-control of uncertain nonlinear systems via state feedback [J]. IEEE Trans. Automat. Contr., 1995, 40 (4):766~768
- [6] Su W, Souza C E de and Xie L. H_w control for asymptotically stable nonlinear systems [J], IEEE Trans. Automat. Contr., 1999.44(5): 989 - 993
- [7] Seo J H, Jo C H and Lee S H. Decentralized H_a-controller design
 [J]. Automatica, 1999, 35(5):865 876
- [8] Tuan H D and Hosoe S. On linear robust H_{**} controllers for a class of nonlinear singular perturbed systems [J], Automatica, 1999, 35(4): 753 - 739
- [9] Isidori A. A necessary condition for nonlinear H_m control via measurement feedback [J]. Systems & Control Letters, 1994, 23(3):169
 177
- [10] Yang G H, Wang J, Soh C B and Lam J. Decentralized H_∞-controller design for nonlinear systems [J]. IEEE Trans. Automat. Contr., 1999, 44(3):578 583

本文作者简价

李 職 1965 年生、讲师、华中理工大学博士生、主要研究方向;非线性控制理论及应用,控制系统设计、

唐小琦 1958年生、副教授、博士、主要研究方向;非线性控制 理论及应用、计算机过程控制、控制系统设计、

周云飞 1956年生, 教授、博士生导师、主要研究方向: 教控加工技术, 计算机过程控制。

隊吉紅 1965 年生, 教授, 博士, 主要研究方向; 教控加工技术, 计算机过程控制, 控制系统设计.