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Study on the Passive Stabilization of Motion of a Class of Lagrange System
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Abstract: The idea of the passive stabilization of nonasympictically stable motion of the dynamical systems by introducing
supplementary degrees of fresdom was advanced for the first time in paper [1]. The effectiveness of the application to the sdy
of Lagrangian system was shown in the specific example of this paper, which has the ynique scientific significance. In the sys-
tem nonlinear friction and inelastic potential energy are adopted. Tt was shown that the problem of the passive stabilization can be
solved in the nonlinear case [2]. It was shown that the problem of the passive stabilization can be solved in the nonlinear and

inelastic potential in this paper.
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1 Statement of the problem

The attitude of a satellite is often controlled by reac-
tive forces requiring some additional epergy. But the
satetlite can also be stabilized by means of the relative
motion of some piece of the satellite moving in nonideal
fluid as an oscillator with damping. This does not re-
quire additional energy and is called “passive stabiliza-
tion”. Here we consider passive stabilization for
Largrangian systern from the specific example, which
has the independent scientific meaning.
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Fig. | The special of PSM
Let an absolutely rigid body S with a mass M performs
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plane-parallel movement under the action of gravity as
the parallelogram pendulum (Fig.1). Vector k is paral-
lel to the vector of gravity, lines O, O;and A; A; are ver-
tical to vector & during the whole motion. The position
of S in space is determined by angle ¢ (Fig.1). More-
over, we suppose a block s with mass m is contained in
S. Now we consider two cases. In the first case, s is-

“fixed to body S (or is frozen in S }. In the second one,

s can move with a friction (nonlinear} under the action
of some spring fixed to body § and its moving direction
is vertical to A;A;. The position of the block s 1o body
§ is determined by coordinate » (Fig.1) . Thus, we can
say, u = ug = constant in the first sitnation and u =
u(t) in the second one, Obviously, in the first situation
the equilibrium state defined by ¢ = Qand w = ug is
stable, yet it is nonasympiotically stable. Is the equilib-
rium state asymptotically stable when s is defrozen? I it
is asymptotically stable, we can say the problem of pass-


http://www.cqvip.com

912 CONTROL THEORY AND APPLICATIONS

Vol. 13

ive stabilization is solved. The following statement will

verify that this problem can be solved only in nonlinear

case by the method in paper [3].

2 Movement equation and their reduc-
tion to special form

Block s moves with an inelastic potential energy
%ﬁuz + %Bu‘*,wheneﬁ > 0,8 > 0, and with a nonlin-

ear friction ), = — a1 — a;u’, namely the generalized
force, where a; > 0,2; > 0. Thus, the studicd me-
chanical sysiem has Lagrange’ s equation of the second
type as follows
M.I2¢p - misingii + M. glsing = 0,

{mﬂ - mlsingp — mipcosp — mg + (1)

Bu + fu’ + aru + au® = 0.
For the sake of convenience we reduce equation (1) to a
undimensional form by introducing undimensional time 7
and length o’ subject to

t = ('—z' dz'_\/ dr,u’:l_

Thus equation (1} can be written as

@ =
sing( - M +@%cosp+1-Fu' —Bu o' —a} u's)
M — sinfg
1o
M (@ cosp+costp—Fu’ ﬁ' B aln —afn’?)
M - sin’g ’
(2)
where
M =“:: >1,ﬁ'=f—;>0,
g = fl—g ai = %,f\/% > 0,
ai = ::,\/% >0, a) = aglmw/fg‘
Equation (2) admits particular solution
=0, v = u, 1 - fup-Pup =0, (3)

corresponding to a equilibrium state of the system.

Supposing ¢ = x and 1’ = ug + v in perrbed move-
ment, we can decompose the right side of equation (2)
to series about perturbation x,%,v,% tll terms of the
third order smallness {including the third onder} as fol-
lows:

2 = apx+bx{ugrvi+brz v e vorxt + oo,
=14+ d(ug+ o)+ daw + arx+ 22+
bilug+v)xt+bax?v+elup + vl +fif+--,
(4)
where
1- M ag
a; = Merb]——%s bz—_j!
- M6 M 1
cp = GM'?' » C2 = M

dy=-f.dr=-aj,e=-F,f=-al.
By introducing variables
£ =v,0 = w, (5)
we have the following equation, which consists of four
differential equations of the first order

(2 = Ay,
F == Ax + piaw + paww + QI+ QEy 4 0,
<0 = w,

= div + dzw—.lzx2+}l2y2+wz+b1x2v +

byt + e’ + fio + 0,

(6)
where
by by
P1 = 7\—’ pa = T:
1
g = AsQQ_— Acs, T ——3ﬁuo,
aI =—R —33"1'% <0- Az = - (dl+ uubl) > 0.

It is possible to point out that the linearized system of
equation (6) falls into two independent linear systems,
the first

= Ay, § = - Ax,
corresponds 0 a pair of purely imaginary roots of its
characteristic equation, and the second
= w, w =div+ daw {7)
corresponds to & pair of complex roots with negative real
parts. By conclusion of known Lyapunov' s theorem
(see [3]), we have a critical case, from which it is im-
possible to obtain the conclusion about stability or insta-
bility of solution (3} in system (4} without using non-
linear terms.
3 Constructing auxilary function of Lya-
punov’s type

Since linear system (7} has eigenvalves of negative

real part (since d; < 0,d, < 0), there exists definitely
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positive Lyapunoy’ s function V® (v, ) such that its
time derivative V¥ (v, w} along equation (7) is nega-
tive definite. Those conditions satisfy function

V(E}(!). ‘II-') = —;—(muvz + Zmuvw + Mzzwz}.

{8)
It satisfies some conditions, make its time derivative
VP (o, 0) = = (A% + w?) < Q. (9
Moreover, according to the methodology of critical case
of n pair purely imaginary®', we constroct auxililary
function V(x,y,v,w) as follows:
Vie,y,v0,w) =

%(xz + )+ VP {0, w) +

V”:'(x,y,v,w)+V(4](x,y,v,w), (10}
where V2 (v,1w) is defined by formula (10), and

Vi x,y,0.w) = 2 e’y dut, 1 = 3,4

4jebensr
(11}
are forms of the third and the fourth order about x, v, v,
w, here ay, are constant coefficients and its algorithm
will be given later, p and ¢ are arbitrary constants,
The derivative along equation (6} by virtue of equali-
ty (10) has the following form:

Vix,y,o,w) =
—q(.lzvz+w2)+f’(3)(x,y,v,w)+V(4}(x,y,v,w)+'",
where V¥ and V) are the foms of the third and the
fourth order respectively defined by:

V('](x,y,v,w) =

A av(r) 3‘/(!) BV(r)

Y ax 2y tw Ty T

- gyl }

(dyv + daw) Y + WV (x,¥,v.m), r = 3,4,

(12)

where

W(S)(x:y!v!w) =
py(prav + pyaw) +

q(mlzv + mnw)(— Az:cz + Azjfz + T‘!Jz)o
W%,y 0,w) =
P}":Q1x3+qz-‘t')’2)+q(mnv+mw)(blx2v+ng2w+m3 +

S )+ {praw + paaw) i§+(—,\2xz+azﬁ+w2) %
{13)
We can seek the coefficients of the form V¥ (x,y,
v,w) from the condition

V2, y,0,w) =
a_E{J} él;(_ﬂ
Ay 9%~ Ax 3y +
vy . ay®
wo o+ id + dzw)a—;’ + 7250, (14)

where W is defined by formula (13).

According to [3], this equation in the form V¥ (x,
y,v,w) has a unique solution.

Substituting V*(x,y,v,w) defined by equation
(12) into equation {14}, we can see that all nonzero
coefficients of V¥ are function of arbitrary parameters p
and ¢. In

W (x,y,0,w) = E waxYotw®, (15)

i+f+k+n=4
we only need to find out thej coefficients wang » Wi »
1wy » Which are necessary to the solution of the problem
of passive stabilization.
Now we can seek the coefficients of the form V& ( x,
y,v.w) from the condition
V(‘”(x,y,v,w) =
ay® ay ay@
P - Ax 2y twTy T+
331:} + Wm(x,y,v,w) =
Cc(? + %)%, (16)
where V4 and W*) are defined by equations (11} and
(15) respectively.
From the lemma of (4], there exists a unique €, in
which equation (14) has solution in the form V', and
also

Ay

(div + daw)

2
C= %(3104@4-10231) + 31”040;)) 234_(00331—3101).
{17
In Egs. (14} and (17). We first suppose p = 1,q =
0, then we obtain functions as follows:
Cp =C |§:& = - _é‘ﬂ.za-m[ =
A A + 427 + d))ej
T 2M (447 + d1)? + 42%dE]
Thus we obtain
v =J£—(na2 + 9 + gV v, w) +

VO, y,0,0) + V¥ (x,y,0,0), (19)
where the coefficients of V*) are linear functions of arbi-
U'aryparamcterspandqasmmcofVm,anditsdeﬁva—
tive along equation (6) is

< 0. {18)
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V= q(.ﬂl.li:.r2 + w4+ (pCp + qu)(xz S L
20}
where the ellipses denote infinitely small terms whose or-
ders are higher than the fourth.

So the particular solution in equation {3) is asymptot-
ically stable. This shows that the problem of passive sta-
bilization about oscillating of body § is solved by intro-
ducing supplementary degree of freedom which is deter-
mined by coodinate u {namely block s is defrozen) .

Remark We point out that if we use a geostation-
ary satellite to take a picture of a certain object on the
ground, it is very irmportant for the camera to take aim,
namely the motion of the satellite must be asymptotically
stable. Usually, the effect brought by a small pertuba-
tion 7s removed by the reaction of a jet stream, which is
prodoced by buming fuel, but the astronantic fuel is very
expensive (Fig.2, Fig.3 in the paper [2]). The result
obtained by us shows that the satellite can also be stabi-
lized by means of the relative motion of some piece of

the satellite moving in a nonideal fluid as an oscillator
with damping and this does not require additional
energy.
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{ Continued from page 910)
6 Conclusion

Two dynamical identification schernes of stator flux
and rotor speed proposed in this paper are based on spe-
cial model reference adaptive principle, both of them use
obtainable information fully. According to Lyapunov
stability theorem, adaptive laws of parameters are syn-
thesized to make state and parameters converge quickly
even the parameter variant laws are not sure. Simulation
shows their advance.
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