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Abstract: Under the assumption that the optumal sensor nules can be found for any given fusion rule, we analyze the con-
didons resulting in the performance equivalence and superiority between fusion rules for general distributed multisensor decision
systems, To obiain globelly optimal performance of a system, by applying the above results, we can partition all possible fusion
rules into equivalence classes of fusion rules and compare performances between some of the equivalence classes; therefore, the
mumber of the valuable fusion rules will be reduced greatly. Moreover, the above analysis does not depend on the statistical prop-
erties of the observation data as well as the objective of optimizing a certein system performance.
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1 Introduction

Consider a distributed multisensor system making a
decision which one occurs among multiple hypothescs,
The data collected by the sensors are first processed lo-
cally to compress them to one or a few binary digits {in-
formation bits) , which are then transmitted to the fusion
center that makes a decision by combining the received
set of local messages under a given fusion (final deci-
sion) rule with the objective of optimizing a certain sys-
tem performance. Therefore, to obtain globally optimal
performance of a system, we should find an optimal fu-
sion rule and the comesponding set of optimal local com-
pression rules, However, this is a very difficult task
since optimal fusion rule in general depends on the sta-

tistical properties of the observation data as well as the
cbjective of optimizing the system performance. To re-
duce the number of fusion niles which are peeded to
check if it is optimal, when all sensor mules are given,
and sensor observation data are conditionally independent
mutually as well as Pp; == Pp;, where Ppy; and Py, are all
the sensor probabilities of detection and false alanm re-
spectively, a monotonic fusion rule was defined and the
optimal fusion rule can be found in the class of mono-
tonic fusion rules {see [1] and [2, Remark 3.3.1,
Page 63]). In this way, the fusion rules considered can
be reduced greatly, However, this result is not suitable
to global system optimization because ali sensor mules
were assumed to be given already.
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In this article, from the point of view of globally op-
timal performance, we analyze the equivalence of some
of the fusion mules for general distributed multisensor
multi-hypothesis decision problem. To focus on compar-
ing the performances of different fusion rules, suppose
one can always find out optimal local compression rules
for any given fusion rule (for a specific algorithm, cf.
[3,4]). After making such an assumption. we can con-
centrate only on fusion rules and show under what condi-
ton two differemt fusion rules are actually equivalent
with the same final cost, and one may be superior to an-
other. Thus, by partitioning the set of all fusion rules to
equivalence classes, comparing performance between
some equivalence classes and dropping off those “worse”
fusion tule classes, the mumber of the vainable fusion
rules will be reduced, such as from 16 to 3 for two sen-
sor binary decision system, or from 256 to 32 for three
sensor binary decision system. For more general multi-
sensor m-ary decision systems , one can use computer to
analyze valuable fusion rules according to the results in
this paper.

2 Problem formulation
2.1 Model

We consider m hypotheses: H;.H;,**, H,, multi-
sensor (multiple observation data) y,,* -, y; distributed
decision problem. A set of local compression rules:

(Y (y) oo B G )i s () oo 19 ()
compresses data y; to r;( < I) information bits at each
sensor, respectively. Obvionsly, different r; binary dig-
its can correspond to 2: different integers, that 1s to say,
the ith sensor quantizes its observation data y; to 2" dif-
ferent integers.

The fusion rule - final decision rule of the fusion cen-
ter is given by an m-valued function F{IM (y,), -,

¢
(x5 B0, 070 10,1 X,

=1

¢
F-{0.1,",m - 1}. Denote N = >, r;. In fact, the

=1
above fusion rule divides a set of 2" different N-tuples
([{1},"'.If’l);"':ﬂ”,"',!}’l)) into m disjoint sub-
sets generally. The number of all the above different
partitions is mzﬁ. In addition, a fixed fusion rule with a
variety of local compression rules can produce a variefy

set of different final decision regions, which is called the
variety set of final decision regions generated by this fu-
sion rule. The goal of our distributed multisensor deci-
sion is to find a globally optimal final decision region of
(¥1s¥2."**»¥;) determined by an optimal partition of

‘
the set of 2 -tuples (I{V,-o, K5y LV, ooe,
1=1

74"} and the corresponding optimal local compression
rules to minimize a desired cost fimetional. Suppose one
can always find out optimal sensor rules solution for any
given cost functional and any fixed fusion rule; thus,
minimizing cost functional just depends on the variety set
of the final decision regions generated by the fusion
rule.

2.2 Some definitions

Definition 1 If two fusion rules have the same gen-
erated variety set of final decision regions, they are
called to be equivalent. Clearly, the minimum costs for
the equivalent fusion rules are identical. Collecting all e-
quivalent fusion rules yields a fusion mule equivalence
class.

Definition 2 If the variety set of final decision re-
gions generated by the first fusion rule is a real subset of
the varety set of final decision regions generated by the
second one, we call the latter to be superior to the for-
mer.

Obviously, Definition 2 is reasonable because opti-
mization result over larger domain is superior to that over
smaller domain.

Definition 3 We call 1 - I$(,) the complemen-
tary indicator function of 7¥”(y,). Obviously, 1 -
1Y ( ;) is also a compression mule for data ¥;, and its 0
compression region is just the 1 compression region of
'y, e

{yisl = By = OF = {30 (0) = 14,
3 Propositions

Using the above definitions, we have the following
two propositions to classify fusion rules and compare
performances between two fusion mles.

Propositions 1 If a fusion rule comes from another
fusion rule by changing some of the local compression
rules in the latter fusion rule to their complementary in-
dicator functions, the both fusion rules are equivalent.
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Now we give an example to show two fusion mles are
equivalent. Suppose

wi? =y y): (L{y) = 0,0(y;) = 0)}
and

w6 = Wy ya): (B{y) = 0,0(y) = 1)
are two different Hy decision regions for 2 sensor binary
decision problem. In the sequel, for notational simplici-
ty denote the above two fusion mles by

|(0(1)’0(2))|Hu and ;(1(1} ,1“)) |H|:|'

respectively. By Proposition 1 the two fusion rules are
equivalent.

From Definition 2 we have

Proposition 2  If restricting some of the local com-
pression niles in a fusicon nile to be identical to 1 or 0,
i.e., only one choice above for those local sensors or
mles, can yields another fusion rule, the fommer should
be superior to the latter.

For example, the fusion mle {(1°,1%) 1y should
be superior to the fusion rule {(1V,1?), (17,
0| &, becanse restricting the second local compression

nile 7;(y;) = 1 in the first fusion mle yields the second
fusion rule just like ignoring the observation data of the
second sensor.

In the above argument, only local compression re-
gions and final decision regions are considered, no lest
type and cost functional are involved; therefore, the
above results do not depend on statistical properties of
observation data, and hold for all other distributed deci-
sion problems, such as Neyman-Pearson test.

4 Applications

We can now apply the above two propositions to ana-
tyze any two fusion mles if they are equivalent and if
one may be superior to another. As examples, the anal-
ysis results for two most popular distributed multisensor
decision systems are presented below.

4.1 Two sensor binary decision

Suppose each sensor compresses its observation data to
1 information bit, There exist 4 different sets of local
messages as follows:

(0 oty ,(1(1)’0&)) (ot ,lm),(l(”,lm).
Clearly, they can produce 16 different fusion rules.

I 1-set-of-local-message case.

09,0 g, 10197,0%0) Ly

10D, 1)y, 11D, 1D,
which are all equivalent to each other (OR nile for H,
decision ) .
I 2-set-of-local-message case.
1) 1(0(1),(){2)),(1(13,0(2))}%,
3(0(11 ,0(2)) '(0(1]'1(2)”3:.’
H @), 1,0y
LD, 1), (0,13 4 .
U]
They are divided mto two equivalence classes (ignoring
Sensor 1 or Sensor 2} and both are worse than Class T .
2) {09, 1)y
HO 1), (10,0P) | .
0
They are both equivalent to each other (XOR mule) .
[l 3-set-of-local-message case.
] (0(1) ’0(2)) , (O(I) R 1(2)) , ( l(l) ’0(2)) i Y s

F19,19),(07,17), (1,091 .

They are both equivalent to each other { AND rule for H,
decisicn ).

IV 4-set-of-local-message case.
i(0(11,0(2))'(OU),I(I)),(1(1)’0(2}},(I(I)’I(Z))}Hu_
This fusion mle implies that the fusion center always
says Hy occurs no matter what data are observed at the
two local sensors. It can also be regarded as a special
OR nule with the two particular local compression miles
(1(y1) = 0,23(y;) =0)); therefore, it is worse than
OR nile as well as Class I .

V 0-set-of-local-message case.

Here (-set-of-local-message case means the fusion
center always chooses H, for any local observation data.
Similar to the last case, it is worse than OR rnule and
Class I .

To sum vp, in two sensor binary decision case, 16
fusion rules are divided into 7 eguivalence classes where
only 3 classes are valuable to find global optinwim fusion
mle and the cormresponding 2 compression rules.

4.2 Three sensor binary decision

Still, suppose each sensor compresses its observation
data to 1 information bit. There exist 8 different sets of
local messages as follows:

(o ’0(2) ,0(3)) , (1(1) ,0 ,0{3)) , (0[1) , 18 08N,

(0(1),0(2},1(3))’(1(1),1(2),0(3)),(1[1),0(2},1(3)),

(0(1),1(2},1(3,1),(1(1),1(2},1(3))_
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Clearly, they can produce 256 different fusion rules.
Using the above two propositions and the similar
method, we can show there are only the following 32
valuable equivalence classes of the fusion rules in this
case. If we know more information about semsors. for
example the sensors are all identical, the number of the
vahable equivalence classes will be reduced again. In
the above example, they will be reduced to 16 valuable
fusion rules.
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