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Identification of Nonlinear Systems Using Recurrent Neural Networks *
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Abstract; This paper proposes a new Lype of recurrent neural network fior the identification of a class of unkmown nanlin-
ear systemn, It is proved that the proposed network with appropriate conditions can represent unkmown input-output relationship of
nonlinear systems, The dynmmnic backpropagation algorithm is employed to estimate the weights of both the feedforward and
feedback connections in the networks, The proposed schemes have been successfully applied to modeling noolinear plants.

Key words: recurrent neurat network; dynamic backpropagation algorithm; system identification

Document code: A

e &Rt R 4en Bl 13 R ¥R
£
(EFBIARE Az ERE - Jbx, 100081)
WE: xRS RENFARE, AR ET —HEFENEEMSAR EHTERSANE - E&
TESEEEELEEEMNRARUEE RETHTUNSERENNEEAREASERENDEL N EENE &

RERRIEEHENARYE.
KA : EER%; SHBL N ERNE; RERR

1 Introduction

In recent years, more and more attention has been
paid to recurrent peural networks in the identification of
dynamic systems since they have a dynamic memory not
found in feedforward networks. The Eiman network! ! is
an important recurrent neural netwrok, which can model
dynamic systems without requiring external feedback
lines. Scott and Ray'®, Pham and Oh®) demonstrated
the performance of the Elman network for nonlinear pro-
cess modeling. However, in the Elman network, only
the weights of feedforward conpections are trained by
means of static backpropagation, while those of the
feedback connections are set to be comstant. With the
objective of adding dynamic memory capability of the
Elman network, this paper proposes a new type of recur-
rent nevral network for system identification. The pro-
posed network is an extended version of the Elman net-
work, It is shown that the modified networks with proper
neurons in the context layer have the capability to ap-
proximate unknown nonlingar systems. In the training of

the network, a new dynamic backpropagation algorithm
is proposed to achieve a faster leaming. Simulation re-
sults demonstrate the proposed network has a better capa-
bility than the Elman network in modeling a complex
system.
2 Proposed recunrent neural networks
The structure diagram of a modified Elman network is
shown in Fig. 1, which has three layers including the in-
put layer, the hidden layer and the output layer. The in-
put layer is composed of two different groups of neu-
rons, that is, the extemal input neurons and the internal
neurons ( also named context units) . The modified H-
man network has feedback commections from the outputs of
the hidden umits to all wnits in the context layer. Moreover,
the activation function in the nonlinear hidden layer can be
chosen as the hyperbolic tangent function

o{x) = %:‘e—:—‘

x !

while all oeurons in the other layers have linear activat-
ions.
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Fig. 1 The proposed recurrent neural network

Let u(%k) € R and (&) € R denote the network
input and output vectors at the discrete time %, respec-
tively. Let c{k) € B’ be the output of the context layer
and k(%) € R, the output of the hidden layer. The
proposed network can be described as

#(k + 1) = wh(k),
h(k) = a(we(k) + w'u(k)), (1)
e(k) = wh(k -1),
whelew"ER“"',w‘ER’“’.MER‘“’.W"ER‘“W
weight matrices. The function o: R’ — [’ is denoted by
a((z1,, 20T = (a(x1),,0 ()

The proposed network becomes the Elman network if
s = ! and the feedback matrix " is a unit matrix. Since
arbitrary connections can be allowed from the hidden
layer to the context layer, the proposed network has
more degrees of freedom to represent dynamic systems.
In the sense of memory capability, the proposed recur-
rent network has more space than the Elman netwrok.

From (1), the relationship between the network out-
put #(%) and state c( k) is derived by

{f(k +1) = walwe(k) + w'u(k)], (2)
c(k) = wolwe(k - 1) + wu(k - 1)].
The above equation can be rewritten as
{j’(k + 1) = gle(®), k)], (3)
e(k) = #le(k - 1),ulk -1)],

where the mappings ¢: ['*? — R?, 8 R™P — &' are
nonlinear smooth functions. Since #(0,0) = 0, the ori-
gin is an equilibrium state of (2). From (3), we have
p(k+ 1) =gle(k),ul(k)] = gile(h), ulk)],
gk +2) =g[#(c(®),u(k)),ulk+1)] =
gale(k),ulk), u(k + 1)],

§Chss) =g #70-]
'lba[c(k)uu(k)s"'su(k + 5 - 1)]5
(4)

where #*~'[---] is an (s - 1) -times iterated composition
of ¢. Denoting
F.(k) = [9Ck + 13,9 (k + )T
and
U, (k) = [u(k) ulk + 1), u(k+ s - D],
(4) is of the form
¥.(8) = ®lc(k), U, (R)], (5)
where ¥ = [y, ¢, 7. If the Jacobian of ¥ with re-
spect to c is nonsingular at ¢ = 0, U, = 0, by using the
implicit function theorem, then there exists a unique Io-
cat solution of (5) as follows
e(k) = e[V, (&), U(R)] (6)
in a oeighborhood of the equilibriomn state ¢ = 0, U, =
0, where £:R*?*9' ' is a smooth function. By (3),
the state e (% + s ) depends on the state ¢ (k) and the in-
put sequence U, (k) = [alkY,ulk + 1), ulk + 5
— 117, this leads to the input-output representation of
the network given by
#(k + 1} =
GLe(kY,~,9(k -5 + 1, u(k),,ulk - s+ 1)],
(M
where G:[*#*?) — ¢ is a smooth function.
3 System identification
Consider the nonlinear dynamic systems described by
y(k+1) = Fly(B),y(k =10, ,y(k - r + 1),
w(k),ulk -1}, u(k - m + 131,
(8)
where z(k) € R? and y(k) € R? are the control and
cutput, respectively. The mapping F:RY*™ —=R7is a
continnous finction. For notational convenience, define
Y(k) = [y(&),,9(k - n+ DT,
UCk) = [u(k),,u(k ~m+ DI
Here we consider the case that n,m(r = m) are
known, but the nonlinear function F( » ) is unknown. As
we know, multi-layer neural networks have been widely
used in the identification of dynamic systems because
they can approximate “ well-behaved” any nonlinear
function to any desired accuracy. The following funda-
mental approximation theorem is proved by Funa-
hashi™! ;
Theorem 1 Let 2 be a compact subset of R” and #:
2 — K™ be a continuous mapping. Then, for an arbi-
trary € > 0, there exist an integer N, an m x N matrix
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A,an N x n matrix B and an /¥ dimensional vector @
such that

ﬂagllf(x)~Aa(BX+@) I <&
holds, where o:RY — R" is a sigmoid function.

In the following we shall show the proposed network
(1) can represent the nonlinear system (8). For this
purpose, we restate the basic points of the theory of dy-
namic systems, which are used o estobilish our main
theorem.

Let [} be an open subset of R™* ™. A mapping F: D
—= [&? is said to be Lipschitz on D if there exists a con-
stant 7 such that

N F(z) -F(y)l s Lllz-yl,
forall x,y € D. We call L a Lipschitz constant for F.
We also call F locally Lipschitz if each point of D has a
neighborhood Dy in D such that the restriction F | Dy is
Lipschitz.

Lemma 10! Let a mapping F: D — RY be continy-
ous. Then F is locally Lipschitz. Moreover, if A ¢ D
is compact, then the restriction F | A is Lipschitz.

Lemma2 Let F,F:D— A7 be Lipschitz continu-
ous mappings. For any ¢ < 0, suppose that || F(x) -
F(x) || < e forall x € D. Consider the following sys-
tems

y(k+1) = F[Y(K),U(k)], (9)
and
{ p(k + 1) = F[¥(R), U(R)],

(kY = [9(k),,y(k - n+ DI, (10)
with the same initial condition [ ¥(0),U{0)] =
[#(0), U(0)] € D. Denote L being a Lipschitz con-
stant of F, then there exists a positive constant I' =
(L) such that

| y(k +1) -9k + DIl < (L), k = 0,1, M.

Proof From (9) and (10), it follows that

y(k+1) —g(k +1) =

FCY(R),U(K)) - F(Y(K),U(k)) +

F(Y(R), UCKY) - F(¥(R),U(K)). (1)
Taking nomms in both sides of equality (11), we have

ly(k+ 1) -2+ D 5

LI Y(R)-F(R) I +

I FY(R), U(RYY-F(P(R), 0GR || . (12)
Since || F(x) - F(x) || < eforalx € D, it follows
that

ly(k+ 1) -5(k+ DIl <

LIvk) -¥(R) ] +¢e <

LI y(k) = g(B) N 4 + LIl y(k -
a+1)-plk-n+1)| +c. (13)

After straight manipulations, by the assumption ¥{0) =

¥(0), there exists a positive constant I'( L) such that
I y(& + 1) - 9(k + D || < T (L)e,

for k € [0,1,---, M]. The proof is completed.

Theorem 2 Let D be an open subset of R™*™,
F: D~ R be a contimous mapping, and A be a com-
pact subset of D. Given any ¢ > 0, there exists a pro-
posed network (1) with the mumber of context umits e-
qual to the order of the system (8) such that

rermax Iyt + 1) -k + DIl <&
holds, where y(k + 1),9#(k + 1) are outputs of the
plant and network, respectively.

Proof For givene > 0, choose 7; such that0 <
< minf{g,A), where A is the distance between A and the
boundary @ D of D. Define
A= |X:XER™, 32€ A, | X -zl < 7l
Since A is compact, A, is a compact subset of D.
Hence, F is Lipschitz on A, by Lemma 1. Denote Ly be-
ing a Lipschitz constant of F | A,. We may choose ¢; >
0 such that

el < F&? (14)

Since the function F is continuous, by Theorem 1, for
any ; > 0, there exist an integer ¥ and matrices 4, €
R™Y,B, € R**™, B, € E¥*™ and an N dimensional
vector @ such that

[m;%]e,ta | FC¥{k), U(k)) -

A (B V(k) + ByUCK) + @) | < ¢
Now, define a mapping G :R™*™ — [|7:
CUY(k), U(R)) = Aia(B Y (k) + BUCK) + @),
(15)
such that the following inequality is satisfied
max | FCXD - 6(X) || < &;.
Acoordingtoﬂ:cabovediscussioninSectionl under
the proper conditions, the input-output representation of
the network (1) can be written as (7). In the following
we consider the outputs of the following systems
y(k + 1) = F(Y(&), U(k)), (16)
and
#{k+1) = GL¥(E), U(F)) =
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Ala(ﬂlf((k)*-BzU(k) + &) an
with the same inital condition [Y(0),Z/(0)] =
[#(0), ¥(0)] € 4,, it can follow from Lemma 2 that

oA Iy + D -g(k+ Dl <« <e
is satisfied.

The proof is completed.

Theorem 2 tells us that the proposed network (1) can
be used to leam the input-output behaviour of dynamic
system (8), In many cases, we do not know the order
of the plant, the oumber of the context units can be set
sufficiently large to meet this assumption.

To update the weights of the networks, we define the
training objective function as

M
= %EeT(k +De(k+1),  (18)

k=0

where M represents the total nember of data patterns used
in the training process, e(k + 1) = y(k +1) - #(k «
1} is the emor between the network and plant outputs at
time k + 1. Using the backpropagation algorithm, the
weights of the neural network are adjusted as follows
Wi = W — ’?iaiu'% + alAw,, (19}
where i is the iteration number, 7;is a leaming rate, « is
a momenium factor, Aw; represents the change in weight
in ith iteration. Here, we use an adapted value of 7, as
follows :
1.05g, ifJ <0.997_,
0.857n, ifJ, =1.02J,;, (20)
T otherwise
70 is chosen to lie between @ and 1. From (18), we can
obtain

a1 =

ﬂ:—EeT(‘[{-l)M.

dw, k=0 w;

dplk +1
M' the mathe-
duw

matical model (1) for the proposed network can be
rewritten as

filk + 1) = 2ulp(k),

hi(k) = a(s(k)),

In order to compute the gradient

S_j(k} = EW;-Cr(k) + EWLH,;(}:),
(k) = 2 uhn(k - 1).

/

The output gradients with respect to w° , w°, ' and »®

are given by
39,0k + 1
B < b, (1)
g,k + 1) o (k)
aW;r = wijPW;r, P’:r = aw}-r ! (2‘2)
3, (k + 1) ) (k)
_aw;d. —~ == w,',-ow‘. P’jd = awfd . (23)
3g,(k + 1 Sk (k)
—L(:—) = WPy, Py = ——, (24)
duwr; n v awfj

where PW:I,P.,:‘,P% satisfy
Py (k) = o' (5)[e, (k) + wﬁﬂof,an;r(k - 131,
[PW:J(O) =0,
(25)
Py (k) = o' () [ ug(k) + w}’,w?waI{d(k -1,
[P,;(O) = 0,

(26)
Py (k) = o' (s)[f () Rk - 1) +
WFrwg-Pw:,(k -1, (27
P,{J(o) = 0.
4 Simulation

In this section, the ability of the proposed recurment
neural network to model nonlincar dynamic systems has
been demonstrated in simulation. The initial weights are
randomly set between ( ~ 0.5,0.5) and the parameters
of the networks are adjusted by (18) ~ (27). The input
sequence is random in the range [ - 1,1]. To test the
performance of the trained network, the network is used
in recall mode to produce the response to a sinusoidal in-
put or random input signal in the range [ - 0.5,0.5].
The performance of the trained network is measured by

MSE = 5 35 [y(k) - 2(0) 1,

where V, represents the number of data pairs [u,y] in
the recall set.
and the proposed network. For demonstration, the same
number of units in the context layer for two types of net-
works 15 used.

Example 1 The plant is described by

ylk+1) = 7

ﬁf’*‘%} +0.5ulk). (28)
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During training, choose 5, = 0.001,a = 0.95,c =
10,5 = 10,i = 1000, A random signal in the range
[ -1,1] is used as the input to the plant and the pro-
posed network. In the recall model, responses from the
plant and the network are obtained for two kinds of sig-
nals: z(%) = 0.62sin{22/25) + 0.5sin(2n/40) and a
random input - 0.5 < u(k) < 0.5,k = 1,2,'--,150.
‘The simulation results are shown in Figs.2 and 3.

*plant output —network output
0 50 100 150
Time Steps
Fig. 2 Sinusoidal respenses of plant (28) and the
proposed network

R
=
= 0
Coos

—t *plant output —network output

0 50 100 150
Time Steps
Fig. 3 Random responses of plant (28) and the
proposed network

For comparison, the MSE values computed for the El-
man network and the proposed network are presented in
Table 1. In this example, both types of networks capture
the dynamics of the given system. However, the pro-
posed network gives a better performance .

Table | Performance indices of different examples
MSE MSE

Example Tnput {the Elman  (the proposed
network) network)
Example 1 Sinusoidal imput  0.000611 0.000575
Example | Random input 0.000401 0.000273
Example 2 Sinusoidal imput 0. 1041 0.0423
Example 2 Random input 0.0233 0,0040

Example 2 The system can be found i the paper
by Sales and Billings'® and is described by
y(k +1) =
0.9722y (k) + 0.3578ulk) - 0.1295u(k - 1) -
0.3103y (&) u(k) - 0.042285°(k - 1) +
0.1663y(k - Lulk - 1) + 0.2573y(k - Le(k) -
0.03259%v (k) y(k - 1) - 0.3513y%(k)ulk - 1) +
0.3084y(k )}y (k- u(k-1)+0. 2999 (k-1)e(k)+
0. 1087y (k- u(k)ulk -1)+0.470y (k- ulk)e(k)+
0.6380u(k - Velk) + e(k +1). {29}

The model used in the experiment was identified from
a laboratory scale liquid level system. The system coh-
tains a DC water pump feeding a conical flask which in
wm feeds a square tank, giving the system secondorder
dynamics. The input is the voltage to the pump motor
and the cutput of the system is the height of water in the
conical flask. The noise sequence e{%) was ganssian
and its variance is Q. 05, The training input is the same
a5 in Example 1. Let 9 = 0.003,2 = 0.65,¢ = 20,
s = 20,¢{ = 3500. Figs.4 and 5 show the responses of
the proposed network during recatl for the case where the
input was, respectively, a sinusoidal function u(%) =
0. 3sin(2n/15)+0. 5sin(2m/25)40.23sin(27/k50) and a
random input in the range [ - 0.5,0.5]. Table 1 gives
the MSE performance indices of the Elman network and
the proposed netwark, The resubts show that both types
of networks can model the system (29}, but the pro-
pased network has a better capability than the Elman net-

-3 * plantoutpul —network ougu

0 20 40 60 80 100 120 140 160 180 200
Time Steps
Fig.4 Sinusoidal responses of plani (29) and the
proposed network

Cutput

0 20 40 60 80 100 120 140 160 180 200
Time Steps

Fig. 5 Random responses of plant (29) and the

proposed nerwork

5 Conclusion
This paper investigates the use of the proposed recur-
rent neural networks for the identification of dynamic
systems. The architecture of the proposed network is an
extended version of the network described by Elman.
The input-ouiput dynamics of the proposed network is
discussed in this paper. It is shown that the proposed
network can represent nonlinear systemn under the as-
sumption that the order of the system is equal to or
less than the number of the context units. The dynamic
{Continued on page 957)
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