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Abstract: The hierarchical identification principle is stated, and the hisrarchical stochastic gradient {HSG) algorithm for
the transfer function matrix (TPM} model for multivariable systems is presentsd. In the hierarchical identification, the system
parameters are divided into the parameter vector, which includes the coefficients of the characteristic polynomial of the systemn,
and the parameter matrix, which includes the coefficients of the numerators of the TFM polynomials, respectively. The comver-
gence analysis, using martingale hyperconvergence theorem, shows that the parameter estimation emor {PEE)} given by the HSG
algonthm is consistently bounded, and that PEE consistently converges to zero under the persistent excitation condition. Hierar-

chical identification has a smafll amount of calculation and is easy to be realized.
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1 Introduction

Reducing the large computational effort required by
previous identification algorithms for multivariable sys-
tems is one of the most difficult projects to be solved in
ilentification area. One scheme is to develop identifica-
tion algorithms which require less computation!'! . For
example, the combined identification methods simultane-
ously to estimate all the parameters of the whole multi-
variable system!%?! rather than to estimate the parameters
of each subsystem of a multivariable systan{'*‘s], the
multi-innovation identification algoritbhm which does not
require matrix inversion'® , the hierarchical identification
algorithm for large-scale systems'’), the hierarchical
least squares algorithm for the transfer function matrix
mode}, and the hierarchical stochastic gradient algerithm

in this paper.

The basic principle of hierarchical identification is
that, at first, a system is decomposed into some subsys-
tems with somller dimension and fewer variables, then
the parameters of each subsystem are estimated respec-
tively. However, there exist associated items between
the sub-systems, i.e., the ith subsystem includes the
unknown parameters of other subsystems. So, this in-
volves very difficult iterative calculations. In onder to
solve this problem, when computing the parameter esti-
mates of the ith subsystem at time 7, the unknown pa-
rameters of other subsystemns are replaced with their esti-
mates at tme ( - 1).

The hierarchical identification for TFM is that the pa-
rameters of the system are divided into a parameter ve-
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ctor and a parameter matrix, and then they are estimat-
ad, respectively. The parameter vector consists of the
coefficients of the characiexistic polynomial of the sys-
tem, and the parameter matrix consists of the coefficients
of the numerators of the TFM polynomials .

The hierarchical identification algorithms require less
computational bumden than Sen and Sinha’ s algo-
rithm'®), but its convergence analysis is more difficult.
In this paper, the convergence of the HSG algorithm is
sidied by using martingale hyperconvergence theorem,
but the convergence of the hierarchical least squares al-
gorithm in Ref. [9] will still be difficult to prove.

2 Hierarchical identification for the TFM
model

Consider the multi-input mult-output stochastic sys-
tem described by the TFM model!®!

Alz)y(e) =

Bn(z} Bu(Z) Blr(z}

321:(2} B:z:(Z) Bzr:(Z} wle) + wli),
Bnilz) Bp(z) B, (z)

(1)
where (¢} = [u1(£},uz(t),"',u7(t}]T€]R!isthe
system input vector, y(&) = [yi(e),ye) .,
y.(1)]T € R™ is the system output vector, z~' repre-
sents the unit delay operator, i.e., z7'y(i} = (1 -
1), zp(e) = y(¢ + 1).w(t) € E™is a stochastic noise
vector with zero mean, A{z) is the monic characteristic
polynomial of the system (of degree n) defined as the
least common denominator of all entries of (he transfer
function matrix of the system, and
A(z) = 1+ ayz”t 4 a7 + -
Bz} = g1zl + ,B!-,n(Z}z_z o+ Bln)zm

The number of the parameters (a;,8;(k)) to be
identified in model (1) is equal o §; = »{mr + 1).

The sequence {w(¢)} is assumed to be a martingale
difference sequence defined on 2 probability space ({2,
F,P) and adapted to the sequence of nondecreasing
sub-sigma algebra | F,,t € | where | F,} is generated
by the observations up to and including time ¢, i.e. £,
= o{y(),ule),y(t ~ 1}, u(0)) and Fy is as-
sumed to contain all initial condiion information. The
sequence {w{t)} satisfies the following noise assump-

+ az ",

tions:
A Elw(e) ! Foy] =0, a.s. .
A2 El{l w21 Fyl=ci(t)s dd < ®,a.s..

A3) ]jmﬁiup*:*zi: Nw(i)ll?< 0% < =, a.s..

where the norm of the matrix X is defined by | X || % =
il X X7,
Eq.(1) can be expressed as
Alz)y(e) = Blz)u(e) + w(i}, (2)
where
B(z) = Byz' 4+ Byz" 4 =+ + Bz, B, € R™"".
In vector form, Eq. (2) may be written as
y(8) + ¢(a = 6T(e) + wle), (3)
where
@) =[yCe-1),y(e-2},-,y(1-n)] € ™",
§" = [By,By,,B,] € B™\",

ay u(e — 1)
2

a=|Ter, olo) = "“: e me
a, ult - n)

Let ¥(t) 4 y(t} - 0Tp(¢) and Z(t) 4 y(t} +
¢(t)a, then system (3) may be decomposed into the
following two imaginary subsystems

s1 Y(e) = - ¢(tla + wle), (4)

S2 Z(t) = Tp(1) + w(e), (5)
Y(e)ER™, ¢(t) ER™ " and ¢ € R*in Eq. (4) may
be regarded as the output vector, information matrix and
parameter vector of system S1. In the same way Z{¢)
€ R", ¢(1) € K" and 67 € R™*** in Eq. (5) may be
regarded as the output vector, information vector and
parameter matrix of subsystem S2.

According to the least squares principle, the least
squares estimates of the pararneter vector e and the pa-
rameter matrix § may be obtained from

() =dC-D+ L[ Y(e)+gpledale-1}],

B0 =0(1-1) + L()[27(s)- g"(1)BC:-D)],
where 4(¢) and (i) are the estimates of a and & at
time ¢, and L;{t) and Z,(¢) are a gain matrix and a
gain vector,

Since ¥{¢) and Z{¢) contain the unknown parameter
matrix § and unknown parameter vector a , it is impossi-
ble to realize the algorithm. The problem can be solved
using the hierarchical identification/control principle for
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large-scale systern'’"®!, and these unknown variables
may be replaced with their corresponding estimates & and
@ at time (¢ - 1). The result is the hierarchical stochas-
tic gradient identification algorithm of estimating the pa-
rameters for the TEM model :
a() =a(e- 1) - £ +

pr)ale - 1) - 87(e - Dgp(1)], (6)

B(e) =805 - 1) _%{f}wm N

(gleda(e - INT - "B - D], (D

r(eYy =r{e =D+ Bl 1%+ Fe(e) 12 rl0) =1,

(8)

where 7, represents an m x m identity matrix. The initial

values of the HSG algorithm may be chosen as 4(0) =

a small real vector (107*), 8(0) = a small real marix

(1071).

3 Convergence of the HSG algorithm

Lemma 1 Assume that the vector x(t) € R" and
the vector #(1) € K satisfy the following equations:

$T()x(t) = 0, fort— »
and

EIE[I(E) - x(t - k)] =0, foranyOc k< =,
and that the vector $(¢} is sufficiently rich {persistently
excited ), i.e. there exist constants 0 < a < 7 < ® and
an integer N > n such that for any ¢ > 0, the following
inequalities hold:

N

(a4) of < #Z:, B+ )8+ i) < B, s,

then
Fl_i.lgx(ﬁ) = 0.

Proof Lete(t + k) = 2(t + k) - x(tdorx(t +
k) = z(tY+e(t + k), it is obvious thate (¢ + k) con-
verges t0 zero, i.e. ‘l_i_xee(z) = 0. In the same way, let
e.(t) = ¢7(t)x(¢}, we have Eq}s|(t) = 0. So

70 + idx(t + i) = et + i),
or
e+ Dxle) = - Tt + idelt + i)} + (2 + 1),

After taking the nom || * || ? of both sides of the above
equation, the summation from ¢ = 1toi = N is

= N
xT(t)[Zﬁ(z + )P (e + i)]x(2) =

=N
M-+ e+ )+t + Mg

=1

=N
22[ I éCe + i) [l 22 (e + i) + e + i),

Taking the trace of Condition ( A4) will lead to
| #(e) |2 < M 4 aN8 < =, and using Condition
(A4}, we have

1=

0 Nella(e) 12 2> [MeXt + i) + e + )],

i=l
Taking the limit of both sides of the above inequality
will obtain the conclusion of Lemma 1 according to lim-
ited existence criterion.

Theorem 1 For the multivariable system (3) and
the HSG algorithm {6} ~ (8}, if Assumptions (Al) ~
(A3) hold, and >, r-'(t) = ®, then the parameter

1=1
estimation eror given by the HSG algorthtm is consis-
tently bounded, i.e.

lim [ 4(¢) - o 12+ N6Ce)-01% < »,a.s..

Proof Define the parameter estimation error vector
() and the parameter estimation error matrix 8(:) as

a(e) a ae) - a, (9)

8(t) & 8(s) - 8, (10)
Substituting Eqgs. (3) and (6) into Eq.(9) yields

a() = 3= 1) - L0 - 9() + wl0)],
(11)
where
g(r) = glr)ale-1)-p(t)a=p(r)alt-1},(12)
1;(:):QT(:-I)cp(z)—-ﬁTcp(t)=9T(t-1)cp(s).
{13}
Substituting Eqs. (3} and (7) into Eq. (10} yiekds
300y = e - 1)+ EHLE() - 50) + w0,
(14)
Define the stochastic Lyapuncv function as
T(e) a la(edl?+ 8% (15)

Substituting Egs. (11} and (14) into Eq. (15}, we have
T(e) =

TG -1) - 2501 e - o) 12 + (&() -

(e Tw(e)] + [8(0) - 2() + w()]T-

)t () + | (o) 1124,
()

T(z—l)-%s) § e(e)-n() z_r(_th(E(”_

[e(e)-ple)+u(t)]s

1}(5))Tw(5)+ ” ‘ﬁ'(t) Jlri-(l-tl)l ¢'(I) " ? .
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[N eCe)—nCe) 124+ 1 wle) 2] +

T
2[5(:)_7,(:)]“”(‘”(”;(il)gv(a)n .

(16)
Since £(t) - 5(t),¢(t), @(2), and r(¢) are uncorre-
lated to () and are F,_; -measurable, taking the con-
ditional expectation of both sides of Eg. (16) with re-
spect to F,_, and using Assumptions Al) ~ A3) gives
E[T(e) 1 ,-1]

T(t - 1) ——m Il &Ce) - n(e) 12+
L) ?+ Nl f? leCs) - 5(e) 12+

ri(t)
L l®?s NoG)i?® 2 (1)
(1) 7ot/ =
r(e 1) - =L oy -
7?(1} %+ Lee)|? z-‘)“ e(t) Hz
or
E[T(e) ) F]-T(t-1) <
_;ﬁn £(s) - ry(t)||2+
r(t) 4
Consider the set

R = [(a(e).60e)): 1 &Ce) - () 1% <
Le(e) 12+ Nl @l -

2(0) Susn-s- ]

A similar derivation © Ref.[11] and applying martin-
gale hyperconvergence theorem [12] to (17) show that
T(¢) converges to a bounded random variable Tg a.s. ,
and (@(t),8(1)) € R, for large ¢.
Hr(e)—>w@and || ¢(e) 12+ | () I? <
then the following relationship holds:
lri_T(&(z),E(z))ERw =

Lim[(a(1),8(e)): | 6() = () |I* = 0,a.5.].
(18)

This completes the proof of Theorem 1.
Theorem 2 For the multivariable system (3) and
the HSG algorithm (6) ~ (8), if the conditions of The-
¢T( )
orem 1 hold, and the vector #;(¢) & ]( =1,
2,,m) is sufficiently rich, ¢;(z) is the :th row of

¢(t); then the parameter estimation error given by the
HSG algorithm consistently converges to zero, i.e.
lim | 6(c) —all®+ 18(2) - 6112
Proof Since $,(¢)(i = 1,2,-,m) is sufficiently
rich, then

=0, a.s..

Ergr(t)
From (18), we have
&(t) = ﬂ(t), fori— @,

= En:ﬂ(t) = o, (19)

or
g(e)a(e -1) = 87(z - 1)e(e), fort— 0.
(20)
Let 8T(t — 1) represent the ith row of 8™(¢ - 1), and

a(e-1)
%(2) & [— 8,(t - 1)} ’
then (20) may be decomposed into the following m e-
quations:
$T(t)x;(t) =0, i =1,2,,m, fort— =,
(21)
From (A3),(18),(19),(11) and {14), we may obtain

En:[xi(t) -%(t-k)] =0, forany0 < k < =,

(22)
From (21) and (22), it is not difficult to reach the con-
clusions of Theorem 2 by using Lemma 1.
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{ Continued from page 948)

backpropagation updating law can be used to train the
weights of the proposed neural petworks. Simulation re-
sulrs of different systems have demonstrated the feasibili-

ty of the proposed methods.
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